Seite:AbrahamElektromagnetismus1908.djvu/204

aus Wikisource, der freien Quellensammlung
Wechseln zu: Navigation, Suche
Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

Die innere Energie E, durch deren Annahme man das Energieprinzip aufrechterhalten kann, darf nicht als kinetische Energie im Sinne der gewöhnlichen Mechanik betrachtet werden; denn in diesem Falle würde jede Berechtigung dafür wegfallen, daß Bewegungsgröße im Sinne der gewöhnlichen Mechanik nicht angenommen wird. Immerhin kann E von der Geschwindigkeit abhängen, da ja diese die Form des Elektrons bestimmt. Die Energiegleichung verlangt

(127) \frac{d\{W+E\}}{dt}=\left(\mathfrak{vK}^{a}\right),

und der Impulssatz

(127a) \frac{d\mathfrak{G}}{dt}=\mathfrak{K}^{a}.

Durch Kombination dieser beiden Sätze erhält man

\frac{d\{W+E\}}{dt}=\left(\mathfrak{v}\frac{d\mathfrak{G}}{dt}\right),

oder

(127b) \left(\mathfrak{G}\frac{d\mathfrak{v}}{dt}\right)=\frac{d}{dt}\left\{ (\mathfrak{vG})-W-E\right\} .

Für gleichförmige Bewegung ist nun

(\mathfrak{vG})-W=2T-W=T-U=L.

Für quasistationäre Bewegungen wird diese Beziehung als gültig angesehen, und es wird L wie E als Funktion der jeweiligen Geschwindigkeit betrachtet. Es wird mithin

(127c) \frac{d\{L-E\}}{dt}=\frac{d\{L-E\}}{d|\mathfrak{v}|}\cdot\frac{d|\mathfrak{v}|}{dt}.

Da ferner, bei stationärer und quasistationärer Bewegung, für das Lorentzsche Elektron aus Symmetriegründen der Impuls parallel der Bewegungsrichtung ist, so gilt

(127d) \left(\mathfrak{G}\frac{d\mathfrak{v}}{dt}\right)=|\mathfrak{G}|\frac{d|\mathfrak{v}|}{dt}.

Nach (127b) sollen nun die Ausdrücke (127c) und (127d) einander gleich sein, und zwar für beliebige Werte der Beschleunigung; hieraus folgt die Relation

(128) |\mathfrak{G}|=\frac{d\{L-E\}}{d|\mathfrak{v}|}.