Seite:AbrahamElektromagnetismus1914.djvu/196

aus Wikisource, der freien Quellensammlung
Wechseln zu: Navigation, Suche
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

Durch Kombination dieser beiden Sätze erhält man

\frac{d\{W+E\}}{dt}=\left(\mathfrak{v}\frac{d\mathfrak{G}}{dt}\right),

oder

(127b) \left(\mathfrak{G}\frac{d\mathfrak{v}}{dt}\right)=\frac{d}{dt}\Bigl\{ (\mathfrak{vG})-W-E\Bigr\}.

Für gleichförmige Bewegungen ist nun

(\mathfrak{vG})-W=2T-W=T-U=L.

Für quasistationäre Bewegungen wird diese Beziehung als gültig angesehen, und es wird L wie E als Funktion der jeweiligen Geschwindigkeit betrachtet. Es wird mithin

(127c) \frac{d\{L-E\}}{dt}=\frac{d\{L-E\}}{d|\mathfrak{v}|}\cdot\frac{d|\mathfrak{v}|}{dt}.

Da ferner, bei stationärer und quasistationärer Bewegung, für das Lorentzsche Elektron aus Symmetriegründen der Impuls parallel der Bewegungsrichtung ist, so gilt

(127d) \left(\mathfrak{G}\frac{d\mathfrak{v}}{dt}\right)=|\mathfrak{G}|\frac{d|\mathfrak{v}|}{dt}.

Nach (127b) sollen nun die Ausdrücke (127c) und (127d) einander gleich sein, und zwar für beliebige Werte der Beschleunigung; hieraus folgt die Relation

(128) |\mathfrak{G}|=\frac{d(L-E)}{d|\mathfrak{v}|}.

Aus (128), im Verein mit (126a) und (126), kann man E ermitteln; man erhält

(128a) \frac{dE}{d|\mathfrak{v}|}=-\frac{1}{4}m_{0}\cdot\frac{|\mathfrak{v}|}{\varkappa}=-\frac{1}{3}\frac{dL}{d|\mathfrak{v}|},

und, durch Integration,

(128b) E=E_{0}-\frac{1}{3}\left(L-L_{0}\right);

hier sind E_{0},\ L_{0} die Werte, welche E und L für das ruhende Elektron besitzen. Aus (124a) folgt

(128c) E=E_{0}-\frac{e^{2}}{6a}(1-\varkappa).

Diese Formel gibt an, wie die innere Energie des Lorentzschen Elektrons mit wachsender Geschwindigkeit abnimmt. Für