Seite:Die räumliche und zeitliche Ausbreitung der Gravitation.djvu/5

aus Wikisource, der freien Quellensammlung
Wechseln zu: Navigation, Suche
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

Weil ferner die Geschwindigkeit, mit der die Bewegungen an einander vorbeigehen, den Wert

c-\frac{\Delta r}{\Delta t}

hat, fällt das Potential wegen des Zeitverbrauches zu seiner Mitteilung an m auch proportional

\frac{c}{c-\frac{\Delta r}{\Delta t}}

aus. Man findet so

V=\frac{\mu}{r\left(1-\frac{1}{c}\frac{\Delta r}{\Delta t}\right)^{2}}.

Solange der Weg Δr kurz und deshalb \frac{\Delta r}{\Delta t} gegen c klein ist, darf man dafür \frac{dr}{dt} setzen. Dadurch wird

V=\frac{\mu}{r\left(1-\frac{1}{c}\frac{dr}{dt}\right)^{2}},

woraus mit Hülfe des binomschen Satzes bis zur zweiten Potenz folgt

V=\frac{\mu}{r}\left[1+\frac{2}{c}\frac{dr}{dt}+\frac{3}{c^{2}}\left(\frac{dr}{dt}\right)^{2}\right].

Hier ist in dem Ausdruck für V nicht bloss r, sondern auch die Ableitung von r nach der Zeit enthalten. Darum ergiebt sich vermöge der allgemeinen Lagrangeschen Bewegungsgleichungen für die Beschleunigung von m, wenn \frac{dr}{dt} mit r' bezeichnet wird,

\frac{1}{m}\frac{dT}{dr}-\frac{1}{m}\frac{d}{dt}\frac{dT}{dr'}=\frac{dV}{dr}-\frac{d}{dt}\frac{dV}{dr'}=-\frac{\mu}{r^{2}}\left[1-\frac{3}{c^{2}}\left(\frac{dr}{dt}\right)^{2}+\frac{6r}{c^{2}}\frac{d^{2}r}{dt^{2}}\right].

Die Annahme, dass \frac{dr}{dt} im Vergleich mit c klein ist, trifft im Gebiet der gewöhnlichen Gravitationserscheinungen zu; sonst könnte das Newtonsche Gesetz sich nicht an bewegten Massen in dem Maße bewahrheiten, wie es dies thut. Aber unter besonderen Bedingungen, z. B. durch eine den Massen von aussen erteilte Anfangsgeschwindigkeit, kann \frac{dr}{dt} so gross werden, dass weder \frac{\Delta r}{\Delta t} ihm gleich gesetzt werden darf, noch die Entwickelung der binomischen Reihe bis zur zweiten Potenz genügt. Die abgeleitete Formel hat daher nur Gültigkeit, wenn die gravitierenden Massen ein freies, nach aussen hin unabhängiges System bilden. In diesem, übrigens vor der Hand wichtigsten Falle bestimmt sie die Veränderung, die das Newtonsche Gesetz dadurch erleidet, dass sich die Potentiale zwischen den Massen nicht momentan, sondern mit Zeitverlust ausbreiten.