Schwere, Elektricität und Magnetismus:028

aus Wikisource, der freien Quellensammlung
Bernhard Riemann: Schwere, Elektricität und Magnetismus
Seite 14
<< Zurück Vorwärts >>
fertig
Fertig! Dieser Text wurde zweimal anhand der Quelle Korrektur gelesen. Die Schreibweise folgt dem Originaltext.

Erster Abschnitt. §. 4.


förmigen Basis und der Höhe angesehen werden. Ihre Masse ist also



Dividirt man durch , so ergibt sich die Potentialfunction der Elementarschale auf den Anfangspunkt der Coordinaten. Um die Potentialfunction der gesammten anziehenden Masse zu erhalten, hat man in Beziehung auf zwischen den Grenzen und zu integriren. Diese ist demnach


(7)


Das Integral hat einen endlichen Werth, wenn die Dichtigkeit, wie wir voraussetzen, an keiner Stelle unendlich gross ist.

 Soll auf der anderen Seite aus dem vollständigen Integral (6) berechnet werden, so hat man dort zu setzen. Dadurch würde aber unendlich gross werden, wenn nicht in (6) die Constante gesetzt wird. Und da, wie bewiesen, nicht unendlich gross ist, so muss sein. Hierdurch geht die Gleichung (6) über in


(8)


Die Potentialfunction auf einen Punkt im inneren Hohlraume ist also constant, und da ihr Werth für den Anfangspunkt bereits berechnet ist, so hat man überhaupt für jeden Punkt im inneren Hohlraume


(9)


 Ist die Dichtigkeit constant, so ergibt sich speciell


(10)


 Die Derivirten von sind gleich Null. Die Kugelschale übt also auf einen Punkt im inneren Hohlraume gar keine Anziehung aus.

 Zweitens. Die angezogene Masseneinheit befinde sich in einem Punkte des äusseren Raumes, d. h. in einem Punkte, für welchen ist.

 In diesem Falle ist der Werth leicht zu bestimmen, den annimmt für . Wenn nemlich wie hier kein Theil der an-