Zum Inhalt springen

Seite:Hilbert - Mathematische Probleme.pdf/12

aus Wikisource, der freien Quellensammlung
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.
David Hilbert: Mathematische Probleme. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse

1. Cantors Problem von der Mächtigkeit des Continuums.


Zwei Systeme, d. h. zwei Mengen von gewöhnlichen reellen Zahlen (oder Punkten) heißen nach Cantor aequivalent oder von gleicher Mächtigkeit, wenn sie zu einander in eine derartige Beziehung gebracht werden können, daß einer jeden Zahl der einen Menge eine und nur eine bestimmte Zahl der anderen Menge entspricht. Die Untersuchungen von Cantor über solche Punktmengen machen einen Satz sehr wahrscheinlich, dessen Beweis jedoch trotz eifrigster Bemühungen bisher noch Niemanden gelungen ist; dieser Satz lautet:

Jedes System von unendlich vielen reellen Zahlen d. h. jede unendliche Zahlen- (oder Punkt)menge ist entweder der Menge der ganzen natürlichen Zahlen 1, 2, 3, … oder der Menge sämmtlicher reellen Zahlen und mithin dem Continuum, d. h. etwa den Punkten einer Strecke aequivalent; im Sinne der Aequivalenz giebt es hiernach nur zwei Zahlenmengen, die abzählbare Menge und das Continuum.

Aus diesem Satz würde zugleich folgen, daß das Continuum die nächste Mächtigkeit über die Mächtigkeit der abzählbaren Mengen hinaus bildet; der Beweis dieses Satzes würde mithin eine neue Brücke schlagen zwischen der abzählbaren Menge und dem Continuum.

Es sei noch eine andere sehr merkwürdige Behauptung Cantors erwähnt, die mit dem genannten Satze in engstem Zusammenhange steht und die vielleicht den Schlüssel zum Beweise dieses Satzes liefert. Irgend ein System von reellen Zahlen heißt geordnet, wenn von irgend zwei Zahlen des Systems festgesetzt ist, welches die frühere und welches die spätere sein soll, und dabei diese Festsetzung eine derartige ist, daß, wenn eine Zahl früher als die Zahl und früher als ist, so auch stets früher als erscheint. Die natürliche Anordnung der Zahlen eines Systems heiße diejenige, bei der die kleinere als die frühere, die größere als die spätere festgesetzt wird. Es giebt aber, wie leicht zu sehen ist, noch unendlich viele andere Arten, wie man die Zahlen eines Systems ordnen kann.

Wenn wir eine bestimmte Ordnung der Zahlen ins Auge fassen und aus denselben irgend ein besonderes System dieser Zahlen, ein sogenanntes Teilsystem oder eine Teilmenge, herausgreifen, so erscheint diese Teilmenge ebenfalls geordnet. Cantor betrachtet nun eine besondere Art von geordneten Mengen, die er als wohlgeordnete Mengen bezeichnet und die dadurch charakterisirt sind,

Empfohlene Zitierweise:
David Hilbert: Mathematische Probleme. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Vandenhoeck & Ruprecht, Göttingen 1900, Seite 263. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Hilbert_-_Mathematische_Probleme.pdf/12&oldid=- (Version vom 1.8.2018)