Beschreibung
Display
01) Coordinate time (GM/c^3) 11) BL r coordinate (GM/c^2) 21) Radius of gyration (GM/c^2) 31) Observed framedragging rate (c^3/G/M)
02) Affine parameter (GM/c^3) 12) BL φ coordinate (radians) 22) Cartesian radius (GM/c^2) 32) Local framedragging velocity (c)
03) 1st derivative (dt/dτ) 13) BL θ coordinate (radians) 23) BH Irreducible mass (M) 33) Cartesian framedragging velocity (c)
04) Grav. time dilation (dt/dτ) 14) dr/dτ (c) 24) Kinetic energy (hf) 34) Proper velocity (c, dl/dτ)
05) Local energy (dt/dτ, mc^2) 15) dφ/dτ (c^3/G/M) 25) Potential energy (hf) 35) Observed velocity (c, d{x,y,z}/dt)
06) Cartesian radius (GM/c^2) 16) dθ/dτ (c^3/G/M) 26) Total energy (hf) 36) Escape velocity (c)
07) x Axis (GM/c^2) 17) d^2r/dτ^2 (c^6/G/M) 27) Carter constant (GMhf/c^3) 37) Local r velocity (c)
08) y Axis (GM/c^2) 18) d^2φ/dτ^2 (c^6/G^2/M^2) 28) φ angular momentum (GMhf/c^3) 38) Local θ velocity (c)
09) z Axis (GM/c^2) 19) d^2θ/dτ^2 (c^6/G^2/M^2) 29) θ angular momentum (GMhf/c^3) 39) Local φ velocity (c)
10) travelled distance (GM/c^2) 20) Spin parameter (GM^2/c) 30) Radial momentum (hf/c) 40) Total local velocity (c)
Equations of motion
All formulas come in natural units:
G
=
M
=
c
=
1
{\displaystyle {\rm {G=M=c=1}}}
Coordinate time by proper time (dt/dτ):
t
˙
=
2
E
r
(
a
2
+
r
2
)
−
2
a
L
z
r
Δ
Σ
+
E
=
ς
1
−
v
2
{\displaystyle {\rm {{\dot {t}}={\frac {2\ E\ r\ \left(a^{2}+r^{2}\right)-2\ a\ L_{z}\ r}{\Delta \ \Sigma }}+E={\frac {\varsigma }{\sqrt {1-v^{2}}}}}}}
Radial coordinate time derivative (dr/dτ):
r
˙
=
Δ
p
r
Σ
{\displaystyle {\rm {{\dot {r}}={\frac {\Delta \ p_{r}}{\Sigma }}}}}
Time derivative of the covariant momentum's r-component (pr/dτ):
p
˙
r
=
(
r
−
1
)
(
μ
(
a
2
+
r
2
)
−
k
)
+
2
E
2
r
(
a
2
+
r
2
)
−
2
a
E
L
z
+
Δ
μ
r
Δ
Σ
−
2
p
r
2
(
r
−
1
)
Σ
{\displaystyle {\rm {{\dot {p}}_{r}={\frac {(r-1)\left(\mu \ \left(a^{2}+r^{2}\right)-k\right)+2\ E^{2}\ r\left(a^{2}+r^{2}\right)-2\ a\ E\ L_{z}+\Delta \ \mu \ r}{\Delta \ \Sigma }}-{\frac {2\ p_{r}^{2}\ (r-1)}{\Sigma }}}}}
Relation to the local velocity:
p
r
=
v
r
1
+
μ
v
2
Σ
Δ
{\displaystyle {\rm {p_{r}={\frac {v_{r}}{\sqrt {1+\mu \ v^{2}}}}{\sqrt {\frac {\Sigma }{\Delta }}}}}}
Latitudinal time derivative (dθ/dτ):
θ
˙
=
p
θ
Σ
{\displaystyle {\rm {{\dot {\theta }}={\frac {p_{\theta }}{\Sigma }}}}}
Time derivative of the covariant momentum's θ-component (pθ/dτ):
p
˙
θ
=
sin
θ
cos
θ
(
L
z
2
/
sin
4
θ
−
a
2
(
E
2
+
μ
)
)
Σ
{\displaystyle {\rm {{\dot {p}}_{\theta }={\frac {\sin \theta \ \cos \theta \left(L_{z}^{2}/\sin ^{4}\theta -a^{2}\left(E^{2}+\mu \right)\right)}{\Sigma }}}}}
Relation to the local velocity:
p
θ
=
v
θ
Σ
1
+
μ
v
2
{\displaystyle {\rm {p_{\theta }={\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1+\mu \ v^{2}}}}}}}
Longitudinal time derivative (dФ/dτ):
ϕ
˙
=
2
a
E
r
+
L
z
csc
2
θ
(
Σ
−
2
r
)
Δ
Σ
{\displaystyle {\rm {{\dot {\phi }}={\frac {2\ a\ E\ r+L_{z}\ \csc ^{2}\theta \ (\Sigma -2r)}{\Delta \ \Sigma }}}}}
Time derivative of the covariant momentum's Ф-component (pФ/dτ):
p
˙
ϕ
=
0
{\displaystyle {\rm {{\dot {p}}_{\phi }=0}}}
Carter-constant (I is the orbital inclination angel):
Q
=
p
θ
2
+
cos
2
θ
(
a
2
(
μ
2
−
E
2
)
+
L
z
2
sin
2
θ
)
=
a
2
(
μ
2
−
E
2
)
sin
2
I
+
L
z
2
tan
2
I
{\displaystyle {\rm {Q=p_{\theta }^{2}+\cos ^{2}\theta \left(a^{2}(\mu ^{2}-E^{2})+{\frac {L_{z}^{2}}{\sin ^{2}\theta }}\right)=a^{2}\ (\mu ^{2}-E^{2})\ \sin ^{2}I+L_{z}^{2}\ \tan ^{2}I}}}
Carter k (constant):
k
=
a
2
(
E
2
+
μ
)
+
L
z
2
+
Q
{\displaystyle {\rm {k=a^{2}\left(E^{2}+\mu \right)+L_{z}^{2}+Q}}}
Total energy (constant):
E
=
(
Σ
−
2
r
)
(
θ
˙
2
Δ
Σ
+
r
˙
2
Σ
−
Δ
μ
)
Δ
Σ
+
ϕ
˙
2
Δ
sin
2
θ
=
Δ
Σ
(
1
+
μ
v
2
)
χ
+
Ω
L
z
{\displaystyle {\rm {E={\sqrt {{\frac {(\Sigma -2\ r)\left({\dot {\theta }}^{2}\ \Delta \ \Sigma +{\dot {r}}^{2}\ \Sigma -\Delta \ \mu \right)}{\Delta \ \Sigma }}+{\dot {\phi }}^{2}\ \Delta \ \sin ^{2}\theta }}={\sqrt {\frac {\Delta \ \Sigma }{(1+\mu \ v^{2})\ \chi }}}+\Omega \ L_{z}}}}
Angular momentum on the Ф-axis (constant):
L
z
=
sin
2
θ
(
ϕ
˙
Δ
Σ
−
2
a
E
r
)
Σ
−
2
r
=
v
ϕ
R
¯
1
+
μ
v
2
{\displaystyle {\rm {L_{z}={\frac {\sin ^{2}\theta \ ({\dot {\phi }}\ \Delta \ \Sigma -2\ a\ E\ r)}{\Sigma -2\ r}}={\frac {v_{\phi }\ {\bar {R}}}{\sqrt {1+\mu \ v^{2}}}}}}}
with the radius of gyration
R
¯
=
χ
Σ
sin
θ
{\displaystyle {\rm {{\bar {R}}={\sqrt {\frac {\chi }{\Sigma }}}\ \sin \theta }}}
Frame Dragging angular velocity (dФ/dt):
ω
=
2
a
r
χ
{\displaystyle {\rm {\omega ={\frac {2\ a\ r}{\chi }}}}}
Gravitational time dilation (dt/dτ):
ς
=
χ
Δ
Σ
{\displaystyle {\rm {\varsigma ={\sqrt {\frac {\chi }{\Delta \ \Sigma }}}}}}
Local velocity on the r-axis:
v
r
1
+
μ
v
2
=
r
˙
Σ
Δ
{\displaystyle {\rm {{\frac {v_{r}}{\sqrt {1+\mu \ v^{2}}}}={\dot {r}}\ {\sqrt {\frac {\Sigma }{\Delta }}}}}}
Local velocity on the θ-axis:
v
θ
Σ
1
+
μ
v
2
=
θ
˙
Σ
{\displaystyle {\rm {{\frac {v_{\theta }\ {\sqrt {\Sigma }}}{\sqrt {1+\mu \ v^{2}}}}={\dot {\theta }}\ \Sigma }}}
Local velocity on the Ф-axis:
v
ϕ
1
+
μ
v
2
=
L
z
R
¯
ϕ
{\displaystyle {\frac {\rm {v_{\phi }}}{\sqrt {1+\mu \ {\rm {v^{2}}}}}}={\frac {\rm {L_{z}}}{\rm {{\bar {R}}_{\phi }}}}}
with the cartesian coordinates:
x
=
r
2
+
a
2
sin
θ
cos
ϕ
,
y
=
r
2
+
a
2
sin
θ
sin
ϕ
,
z
=
r
cos
θ
{\displaystyle {\rm {x={\sqrt {r^{2}+a^{2}}}\sin \theta \ \cos \phi \ ,\ y={\sqrt {r^{2}+a^{2}}}\sin \theta \ \sin \phi \ ,\ z=r\cos \theta \quad }}}
The observed velocity β is given by:
β
=
(
d
x
/
d
t
)
2
+
(
d
y
/
d
t
)
2
+
(
d
z
/
d
t
)
2
{\displaystyle {\rm {\beta ={\sqrt {(dx/dt)^{2}+(dy/dt)^{2}+(dz/dt)^{2}}}}}}
The local escape velocity is given by the relation:
ς
=
1
/
1
−
v
e
s
c
2
→
v
e
s
c
=
ς
2
−
1
/
ς
{\displaystyle {\rm {\varsigma =1/{\sqrt {1-v_{\rm {esc}}^{2}}}\ \to \ v_{\rm {esc}}={\sqrt {\varsigma ^{2}-1}}/\varsigma }}}
Shorthand Terms:
Σ
=
a
2
cos
2
θ
+
r
2
,
Δ
=
a
2
+
r
2
−
2
r
,
χ
=
(
a
2
+
r
2
)
2
−
a
2
sin
2
θ
Δ
{\displaystyle {\rm {\Sigma =a^{2}\cos ^{2}\theta +r^{2}\ ,\ \ \Delta =a^{2}+r^{2}-2r\ ,\ \ \chi =\left(a^{2}+r^{2}\right)^{2}-a^{2}\ \sin ^{2}\theta \ \Delta }}}
Sources: [ 1] [ 2] [ 3] [ 4] [ 5] [ 6]
References
↑ Pu, Yun, Younsi & Yoon: General-relativistic radiative transfer in Kerr spacetime , p. 2+
↑ Janna Levin & Gabe Perez-Giz: A Periodic Table for Black Hole Orbits , p. 30+
↑ Scott A. Hughes: Nearly horizon skimming orbits of Kerr black holes , p. 5+
↑ Janna Levin & Gabe Perez-Giz: The Phase Space Portrait , p. 2+
↑ Misner, Thorne & Wheeler (MTW): The Bible Archivkopie in der Wayback Machine , p. 897+
↑ Simon Tyran: Kerr Orbits / Gravitationslinsen
Lizenz
Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Dieses Werk darf von dir
verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
neu zusammengestellt werden – abgewandelt und bearbeitet werden
Zu den folgenden Bedingungen:
Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten. https://creativecommons.org/licenses/by-sa/4.0 CC BY-SA 4.0 Creative Commons Attribution-Share Alike 4.0 true true
File usage
187
189
8
8
758
500
inner ergosphere and ring singularity
Deutsch Photonenorbit um ein maximal rotierendes schwarzes Loch
Englisch Photon orbit around an extremal Kerr black hole