ist gewiß möglich, da die Determinante
|
|
offenbar nicht identisch in allen Argumenten Null ist und zur Erfüllung unserer Forderung nur nötig wird, die als ganze rationale Zahlen so zu bestimmen, daß von Null verschieden ausfällt.
Nun sei in Formel (10) etwa eine Linearform, deren Koeffizienten jedenfalls nicht sämtlich verschwinden, so daß
|
|
eine positive von Null verschiedene Zahl wird. Setzen wir dann zur Abkürzung
|
(, …, ),
|
so haben die Linearformen
|
, …,
|
sämtlich die nämliche Quadratsumme ihrer Koeffizienten wie ; es gibt daher gewiß eine orthogonale Transformation der Variabeln , …, , welche in , ferner je eine solche orthogonale Transformation, die in , …, bzw. in überführt. Wenden wir diese orthogonalen Transformationen sämtlich der Reihe nach auf die Formel (10) an, addieren die so entstehenden Formeln und dividieren durch , so wird, wenn wir noch
|
, …,
|
setzen:
,
|
(11)
|
wo die gewisse Linearformen der , …, sind, wie sie aus den , …, durch jene orthogonalen Transformationen nach Hineinziehung des Faktors entstehen. Wir betrachten nun dasjenige System von linearen Gleichungen für die Unbekannten , …, , welches aus der Identität
|
|
entspringt, wenn man die nämlichen Potenzen und Produkte von Potenzen der Variabeln , …, auf beiden Seiten gleich setzt. Da die Determinante dieses Gleichungssystems bis auf einen Zahlenfaktor die von Null verschiedene