David Hilbert: Mathematische Probleme. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse | |
|
Probleme als das vorgelegte noch nicht oder noch unvollkommen erledigt haben. Es kommt dann Alles darauf an, diese leichteren Probleme aufzufinden und ihre Lösung mit möglichst vollkommenen Hülfsmitteln und durch verallgemeinerungsfähige Begriffe zu bewerkstelligen. Diese Vorschrift ist einer der wichtigsten Hebel zur Ueberwindung mathematischer Schwierigkeiten und es scheint mir, daß man sich dieses Hebels meistens – wenn auch unbewußt – bedient.
Mitunter kommt es vor, daß wir die Beantwortung unter ungenügenden Voraussetzungen oder in unrichtigem Sinne erstreben und in Folge dessen nicht zum Ziele gelangen. Es entsteht dann die Aufgabe, die Unmöglichkeit der Lösung des Problems unter den gegebenen Voraussetzungen und in dem verlangten Sinne nachzuweisen. Solche Unmöglichkeitsbeweise wurden schon von den Alten geführt, indem sie z. B. zeigten, daß die Hypotenuse eines gleichschenkligen rechtwinkligen Dreiecks zur Kathete in einem irrationalen Verhältnisse steht. In der neueren Mathematik spielt die Frage nach der Unmöglichkeit gewisser Lösungen eine hervorragende Rolle und wir nehmen so gewahr, daß alte schwierige Probleme wie der Beweis des Parallelenaxioms, die Quadratur des Kreises oder die Auflösung der Gleichungen 5ten Grades durch Wurzelziehen, wenn auch in anderem als dem ursprünglich gemeinten Sinne, dennoch eine völlig befriedigende und strenge Lösung gefunden haben.
Diese merkwürdige Thatsache neben anderen philosophischen Gründen ist es wohl, welche in uns eine Ueberzeugung entstehen läßt, die jeder Mathematiker gewiß teilt, die aber bis jetzt wenigstens niemand durch Beweise gestützt hat – ich meine die Ueberzeugung, daß ein jedes bestimmte mathematische Problem einer strengen Erledigung notwendig fähig sein müsse, sei es, daß es gelingt, die Beantwortung der gestellten Frage zu geben, sei es, daß die Unmöglichkeit seiner Lösung und damit die Notwendigkeit des Mißlingens aller Versuche dargethan wird. Man lege sich irgend ein bestimmtes ungelöstes Problem vor, etwa die Frage nach der Irrationalität der Euler-Mascheronischen Constanten oder die Frage, ob es unendlich viele Primzahlen von der Form giebt. So unzugänglich diese Probleme uns erscheinen und so ratlos wir zur Zeit ihnen gegenüber stehen – wir haben dennoch die sichere Ueberzeugung, daß ihre Lösung durch eine endliche Anzahl rein logischer Schlüsse gelingen muß.
Ist dieses Axiom von der Lösbarkeit eines jeden Problems eine dem mathematischen Denken allein charakteristische Eigentümlichkeit
David Hilbert: Mathematische Probleme. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Vandenhoeck & Ruprecht, Göttingen 1900, Seite 261. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Hilbert_-_Mathematische_Probleme.pdf/10&oldid=- (Version vom 1.8.2018)