Zum Inhalt springen

Seite:NewtonPrincipien.djvu/623

aus Wikisource, der freien Quellensammlung
Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

No. 182. S. 344. Zur Erläuterang der im Texte aufgeführten einzelnen Rechnungen, diene Folgendes. Aus 2,24597 : 2F = 7913/38 : 15613/38 folgt 2F = 4,4256 Zoll. Für den Fall der 15613/38 Gran im leeren Raume wiegenden Kugel, ist das beim Falle der Körper vorkommende g = 193⅓ Zoll. Im Wasser wiegt die Kugel nur 77 Gran, und daher wird die 1 Secunde entsprechende Fallhöhe = · 193⅓ = 95,219 Zoll. Setzt man nun s = 95,219 = g¹ t² = g¹ 1 Sec., F = 2,2128 = g¹ · G², so wird G : 1 = oder G = 0,15244 Secunde. Ferner wird = H = 2g¹G, mithin H · G = 2g¹G² = 2F. Aus der Proportion 0,15244 : 4 = 2F : S, folgt der 4 Secunden entsprechende Weg S = 116,1245 Zoll. Hiervon muss nach §. 60, 1,3862944 F = 3,0676 Zoll subtrahirt werden. Endlich ergiebt sich aus dem im Texte gegebenen Durchmesser = 0",84224 oder Halbmesser = 0,42112 Zoll der grösste Kreis der Kugel = 0,55715 Quadratzoll, der horizontale Querschnitt des Kastens = 81, mithin die zwei einzelnen Verhältnisse und 81 : 80,44285 und hieraus das zusammengesetzte Verhältniss 1 : 0,9914. Der im Text aufgeführte Weg 113,0569 Zoll muss daher in diesem Verhältnisse vermindert oder mit multiplicirt werden und gebt so in 112,08 Zoll über.


No. 183. S. 357. Diess lässt sich noch deutlicher aus einer graphischen Darstellung ersehen. Bezeichnen a, b, c, d, e, f u. s. w. einzelne Theilchen, geben die Pfeile die Richtung der Bewegung an, wobei a, c, e einerlei, b, d, f die entgegengesetzte Richtung haben; so findet im oberen Falle eine Verdichtung, im untern Falle eine Verdünnung der zunächst auf einander folgenden Theile statt.

No. 184. S. 362. (Fig. 184., 185.) Im ersten Falle

LN = PL — PN = EG + Gε — Gε — εγ oder εγ = GE — LN.

Im zweiten Falle ist Gγ — Eε = (Gε + εγ) — (EG + Gε) = εγ — GE = Pn — Pl = ln oder εγ = GE + In.

No. 185. S. 362. Denkt man sich aus K eine Linie Kn LN und = LN, so wird Δ KHn ∼ JMO, weil die Seiten beider Dreiecke auf einander perpendikulär stehen, mithin Kn : KH = JM : JO oder LN : KH = JM : OP.

No. 186. S. 365. (Fig. 184.) Es ist nämlich HL = sin PH und KN = sin PK. Fällt nun K mit P zusammen, so wird KN = sin O = 0 und es kann HL = sin PH alsdann = PH oder = KH gesetzt werden, weil wegen der Kleinheit der Linie EG der Bogen KH = PH nothwendig sehr klein ist.

No. 187. S. 365. Setzt man die eine Kraft; = 2g, die andere = 2g', die

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 615. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/623&oldid=- (Version vom 1.8.2018)