Seite:K. Schwarzschild - Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie (1916).pdf/4

aus Wikisource, der freien Quellensammlung
Wechseln zu: Navigation, Suche
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

man durch direkte Ausführung der Variation die Differentialgleichungen der geodätischen Linie bildet und aus diesen die Komponenten abliest. Die Differentialgleichungen der geodätischen Linie für das Linienelement (9) ergeben sich durch die Variation unmittelbar in der Form:

=f_{1}\frac{d^{2}x_{1}}{ds^{2}}+\frac{1}{2}\frac{\partial f_{4}}{\partial x_{1}}\left(\frac{dx_{4}}{ds}\right)^{2}+\frac{1}{2}\frac{\partial f_{1}}{\partial x_{1}}\left(\frac{dx_{1}}{ds}\right)^{2}-\frac{1}{2}\frac{\partial f_{2}}{\partial x_{1}}\left[\frac{1}{1-x_{2}^{2}}\left(\frac{dx_{2}}{ds}\right)^{2}+\left(1-x_{2}^{2}\right)\left(\frac{dx_{3}}{ds}\right)^{2}\right]\,

=\frac{f_{2}}{1-x_{2}^{2}}\frac{d^{2}x_{2}}{ds^{2}}+\frac{\partial f_{2}}{\partial x_{1}}\frac{1}{1-x_{2}^{2}}\frac{dx_{1}}{ds}\frac{dx_{2}}{ds}+\frac{f_{2}\ x_{2}}{\left(1-x_{2}^{2}\right)^{2}}\left(\frac{dx_{2}}{ds}\right)^{2}+f_{2}\ x_{2}\left(\frac{dx_{3}}{ds}\right)^{2}\,

=f_{2}\left(1-x_{2}^{2}\right)\frac{d^{2}x_{3}}{ds^{2}}+\frac{\partial f_{2}}{\partial x_{1}}\left(1-x_{2}^{2}\right)\frac{dx_{1}}{ds}\frac{dx_{3}}{ds}-2f_{2}\ x_{2}\frac{dx_{2}}{ds}\frac{dx_{3}}{ds}\,

=f_{4}\frac{d^{2}x_{4}}{ds^{2}}+\frac{\partial f_{4}}{\partial x_{1}}\frac{dx_{1}}{ds}\frac{dx_{4}}{ds}.\,

Der Vergleich mit (2) gibt die Komponenten des Gravitationsfeldes

\Gamma_{11}^{1}=-\frac{1}{2}\frac{1}{f_{1}}\frac{\partial f_{1}}{\partial x_{1}},\quad\Gamma_{22}^{1}=+\frac{1}{2}\frac{1}{f_{1}}\frac{\partial f_{2}}{\partial x_{1}}\frac{1}{1-x_{2}^{2}},\,

\Gamma_{33}^{1}=+\frac{1}{2}\frac{1}{f_{1}}\frac{\partial f_{2}}{\partial x_{1}}\left(1-x_{2}^{2}\right),\,

\Gamma_{44}^{1}=-\frac{1}{2}\frac{1}{f_{1}}\frac{\partial f_{4}}{\partial x_{1}},\,

\Gamma_{21}^{2}=-\frac{1}{2}\frac{1}{f_{2}}\frac{\partial f_{2}}{\partial x_{1}},\quad\Gamma_{22}^{2}=-\frac{x_{2}}{1-x_{2}^{2}},\quad\Gamma_{33}^{2}=-x_{2}\left(1-x_{2}^{2}\right),\,

\Gamma_{31}^{3}=-\frac{1}{2}\frac{1}{f_{2}}\frac{\partial f_{2}}{\partial x_{1}},\quad\Gamma_{32}^{3}=+\frac{x_{2}}{1-x_{2}^{2}},\,

\Gamma_{41}^{4}=-\frac{1}{2}\frac{1}{f_{4}}\frac{\partial f_{4}}{\partial x_{1}}\,

(die übrigen null).

Bei der Rotationssymmetrie um den Nullpunkt genügt es, die Feldgleichungen nur für den Äquator \left(x_{2}=0\right)\, zu bilden, so daß man, da nur einmal differenziert wird, in den vorstehenden Ausdrücken überall von vorneweg 1-x_{2}^{2}\, gleich 1 setzen darf. Damit liefert dann die Ausrechnung der Feldgleichungen

a) \frac{\partial}{\partial x_{1}}\left(\frac{1}{f_{1}}\frac{\partial f_{1}}{\partial x_{1}}\right)=\frac{1}{2}\left(\frac{1}{f_{1}}\frac{\partial f_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{1}{f_{2}}\frac{\partial f_{2}}{\partial x_{4}}\right)^{2}+\frac{1}{2}\left(\frac{1}{f_{4}}\frac{\partial f_{4}}{\partial x_{1}}\right)^{2},\,
b) \frac{\partial}{\partial x_{1}}\left(\frac{1}{f_{1}}\frac{\partial f_{2}}{\partial x_{1}}\right)=2+\frac{1}{f_{1}f_{2}}\left(\frac{\partial f_{2}}{\partial x_{1}}\right)^{2},\,
c) \frac{\partial}{\partial x_{1}}\left(\frac{1}{f_{1}}\frac{\partial f_{4}}{\partial x_{1}}\right)=\frac{1}{f_{1}f_{4}}\left(\frac{\partial f_{4}}{\partial x_{1}}\right)^{2}.\,