Mathematische Principien der Naturlehre/Bemerkungen und Erläuterungen
← Ueber das Weltsystem. | Mathematische Principien der Naturlehre (1872) von Isaac Newton, übersetzt von Jakob Philipp Wolfers Bemerkungen und Erläuterungen |
No. 1. S. 40. (Dortige Figur). RV drückt die ganze Verzögerung aus, welche das Pendel durch den Widerstand der Luft erleidet, während es eine doppelte Schwingung ausführt; dieselbe widerstehende Kraft würde daher ½RV hervorbringen, während das Pendel eine einfache Schwingung zurücklegt. Der Anfangspunkt der letzteren ist aber weder in R noch in V, sondern in irgend einen zwischen beiden liegenden Punkt zu setzen, weil der Körper eine grössere Verzögerung erlitten hat, während er den grösseren Bogen der ersten, als während er den kleineren Bogen der zweiten Schwingung beschrieb. Dieser zwischenliegende Punkt wird genähert erhalten, wenn man ST = ¼RV so in die Mitte legt, dass der Punkt x sowohl ST als RV halbirt.
No. 2. S. 52. Setzt man den Bogen AB = α, Ab = β, so wird für den Radius AM = 1, BD = AC = sin vers. α = 1 – cos. α = 2 sin ½α² AB = 2 sin AGB = 2 sin ½α und eben so bd = 2 sin ½β²; Ab = 2 sin ½β. Werden nun α und β verschwindend klein, so wird BD = ½α², AB = α, bd = ½β², Ab = β, demnach jetzt: AB² : Ab² = α² : β² = BD : bd.
No. 3. S. 52. Weil , so wird AD² = Constans. DB, und daher für AC = DB als Abscisse, BC = AD die zugehörige Ordinate in einer Parabel. Ferner ist nach den Gesetzen der Parabel die krummlinige Figur ABC = ⅔ ACBD und daher die krummlinige Figur ABD = ⅓ ABCD = ⅔ Δ ABD.
No. 4. S. 56. (Dortige Figur). Da nämlich CV ∥ AB und Cc ∥ BV, so ist CVBc ein Parallelogramm, also CV = Bc = AB, und da auch CV ∥ AB, so wird ABCV ebenfalls ein Parallelogramm, dessen Diagonale BV nach der Construction den Mittelpunkt S trifft.
No. 5. S. 57. Da AB = BG ist, hat man Δ SAB = SBc. Nach der Voraussetzung ist SAB = SBC, also SBC = SBc, mithin Cc ∥ SB. Längs BS muss auch die Centripetalkraft gerichtet sein, welche bewirken soll, dass der Körper, statt von B längs Bc fortzugehen, nach C hin abgesenkt werde.
No. 6. S. 59. Setzt man die Umlaufszeiten in zwei Kreisen = T, t, die Radien = R, r; so würden die in der Zeiteinheit beschriebenen Bogen , . Das in §. 18. enthaltene Verhältniss geht daher über .
No. 7. S. 60. Werden die Centripetalkräfte durch F, f, die Geschwindigkeiten durch V, v bezeichnet; so ist nach dem Lehrsatz und nach Zusatz 2. und da hier T²:t² = R³:r³; so wird . Ferner geht die Proportion hier über in .
No. 8. S. 60. Setzt man allgemein die Schwerkraft = 2g, so wird bekanntlich ein vermöge derselben beschriebener Weg f = gt³. Setzt man nun die Zeit t = 1, und wird während derselben Zeit der Bogen a des Kreises beschrieben, so gehört zu demselben die Fallhöhe g und es ist daher g · 2r = a² oder 2g = , d. h. die Schwerkraft identisch mit der Centripetalkraft. Demnach und für t = 1 a² = 2r · f.
No. 9. S. 61. Bezeichnet Pp die Geschwindigkeit in P, Qq die Geschwindigkeit in q, wobei die kleinen Stücke Pp und Qq der Tangenten statt der Bogen gesetzt sind; sind ferner SM und SN die Perpendikel auf die Tangente: so ist Fläche SPp = ½Pp · SM, Fläche SQq = ½Qq · SN, also SPp : SQq = Pp · SM : Qq · SN. Nach §. 13. sind aber SPp und SQq den Zeiten proportional, und im vorliegenden Falle einander gleich und mit der Zeiteinheit identisch. Daher Pp · SM = Qq · SN oder Pp : Qq = SN : SM. Nach der Construction ist Pp : Qq = QB : AP = DQ' : DP' (Fig. 17). Angenommen nun, die Linie TS träfe DP' nicht in D, sondern in einem am x davon entfernten Punkte F; so denke man sich ein Perpendikel FG auf TN gefällt. Es würde dann leicht folgen SM : DP' + x = SN : FG und da oben SM : DF = SN : DQ' jetzt DP' + x : DP' = FG : DQ'. Dies ist aber nicht möglich, weil DP' + x > DP' und FG < DQ; es muss daher TS durch D gehen.No. 10. S. 62. Die Centripetalkraft verhält sich daher (nach §. 21.) direct wie und indirect wie der Körper .
No. 11. S. 63. Eigentlich hat man, wenn PR eine Tangente in P ist, VP : PR = PQ : PR und daher . Ist aber der Bogen PQ verschwindend klein, so wird QR ∥ VP, PR = PQ = PQ und so .No. 12. S. 67. Sind in der Ellipse oder Hyperbel a' und b' conjugirte Halbmesser, α der Coordinatenwinkel, a und b die halben Hauptaxen, so ist bekanntlich a'b' sin α = ab.
No. 13. S. 67. Setzt man Pv = x', Qv = y', DC = b', CP = a', so stimmt die Proportion Pv · vG : Qv² = PC² : CD² (Fig. 23.) mit der bekannten Gleichung der Ellipse überein. No. 14. S. 68. Es wird nämlich Qv² + uP · Pv = Pv (uV + uP) = vP · P · V. Ferner ist uP = PT + Tv; vP = PT – Tv also uP · vP = PT² – Tv² und Qv² + uP · Pv = Qv² – Tv² + PT² = QT² + PT² = PQ².
No. 15. S. 68. Wenn Q mit P zusammenfällt, wird PF mit dem Perpendikel von C auf die Tangente identisch.
No. 16. S. 69. Die gemeinschaftliche halbe grosse Axe sei = a, die halbe kleine Axe CM = B, Cm = b, die Umlaufszeiten resp. T und t. Da die beschriebenen Flächenräume den Zeiten proportional sind, haben wirSind nun ACD, ACE gleichzeitig beschriebene Sectoren, so wird die Umlaufszeit desto kleiner, je grösser ein solcher Sector ist; also
Sind diese Sectoren aber sehr klein, so verhalten sie sich wie die Geschwindigkeiten im Punkt A oder nach §. 7.
Setzt man nun, der Kürze wegen, AG = x, so hat man , also
oder nach 2., 3. und 4. T : t = b : B, und nach 1. T : t = B: b, also
No. 18. S. 73. Ist wie vorhin PO = b, AO = a (Fig. 26.), so wird als Subtangente , mithin MA = AO = a. Ferner ist SP = r = a + = AM + AS = MS, endlich da MSP gleichschenklig und SN (Fig. 26.) perpendikular auf MP, so ist MN = NP. No. 19. S. 76. Wegen der Proportionalität zwischen den Zeiten und den in ihnen beschriebenen Flächenräumen, möge die Fläche OT · SP in der Zeiteinheit beschrieben sein, die ganze Fläche E der Ellipse in T solchen Einheiten beschrieben werden; alsdann ist 1 : T = QT · SP : E also E = T · QT · SP = T.
No. 20. S. 77. Ist dieser grösste oder kleinste Abstand = c, so ist die Geschwindigkeit im Kegelschnitt proportional, im betreffenden Kreise ist der Parameter = 2c, mithin die Geschwindigkeit in demselben proportional; es verhält sich daher die erstere Geschwindigkeit zur letzteren, wie .
No. 21. S. 77. Die Abstände Sc und SC sind respective a und A, die Perpendikel Sd und SD b und B, die Parameter l und L hier und , die Geschwindigkeiten v und V; demnach und auch .No. 22. S. 78. Ist der Parameter = p, die Geschwindigkeit im Kegelschnitt = V, die im ersten Kreise = k, die im zweiten = K, der Abstand in diesem und im Kegelschnitt = r, das Perpendikel auf die Tangente = T; so hat man, nach Zusatz 8. V : k = ½p : T nach §. 18., Zusatz 6. , mithin .
No. 23. S. 83. Setzen wir die zu B gehörende Abscisse AM = x, die Ordinate BM = y, den Radius vector BS = r; so wird bekanntlich v² = (1 – e²)(2ax – x²) wo e die Excentricität der Ellipse ausdrückt, ferner weil AS = a(1 – e)r² = y² + (AS – x)² = (1 – e²) (2ax – x²) + (a(1 – e) – x)² und hieraus nach gehöriger Reductionund eben so, wenn AN = x1, CN = y1, SC = r1 gesetzt wird.
Da nun, wenn wir AG durch d bezeichnen, BK = d + x, LC = d + x1 nach Prop. 2. d + x : r = 2a : 2ae = 1 : e, so folgt
und nach derselben zweiten Proportion d + x1: r1 = 1 : e also
Vergleicht man 3. mit 1. und 4. mit 2., so gehören die Gleichungen 3. und 4. einer Ellipse an, wenn
Nach Prop. 4. des Textes ist aber 2ae : 2a = a(1 – e) : d also in der That de = e(1 – e) wie in 5.
No. 24. S. 84. Soll man K und k so bestimmen, dass VK : KS = Vk : kS = a : e werde, so ziehe man aus V unter beliebigem Winkel mit VS die Linie VM, mache auf dieser VL = a, LM = e = LN, ziehe MS und LK ∥ MS; alsdann ist VK : KS = VL : LM = a : e. Ferner ziehe man NS und Lk ∥ NS; alsdann ist Vk : kS = VL : LN = a : e; also auch VK : KS = Vk : kS.No. 25. S. 85. Man mache AB = SV (Fig. 36), AC = SP, AD = ab, ziehe BD und CE ∥ BD; alsdann ist AE = r.
No. 26. S. 86. Da MN = BZ – AZ, (Fig. 37.) so halbire man AB in U, trage rechts und links von U die gegebene Länge ½MN auf; alsdann ist MA gegeben. Macht man nun BV = MN, BW = MA, zieht man AW und XV ∥ AW; so hat man BX : BW = BV : AB, d. h. BX : MA = MN : AB also BX = PM (im Text).
Setzt man die grosse Axe MN = 2a (Fig. 37.), die Excentricität AB = 2ae; so ist MA = ½(AB – MN) = ae – a; also nach Prop. 1. .
Ist ferner die Abscisse des Punktes Z, in Bezug auf MA als Axe und M als Anfangspunkt, = x, der Radiusvector AZ = r; so wird und da r = ex + ae – a (§. 41., Bemerkung) , . Da nun ferner
No. 27. S. 89. Ist in einer Ellipse ein Halbmesser CB = a, sein ihm conjugirter Halbmesser CD = b, die Abscisse CL eines beliebigen Punktes H, in Bezug auf den ersten als Abscissenaxe = x, die zugehörige Ordinate HL = y, alsdann ist bekanntlich
Nun verlege man den Anfangspunkt der Coordinaten nach F, so dass CF = α sei; alsdann wird, wenn die Richtung der Coordinaten unverändert bleibt, die Abscisse FJ = CL = x, die Ordinate HJ = y1 = y — α, und daher nach 1. die Gleichung in Bezug auf die neuen Coordinaten
Aus 1. und 2. folgt
oder
Aus 3. folgt aber für y1 = 0
und hieraus . Substituirt man diesen Werth von α2 in Gl. 3., so ergiebt sich
Da nun y1 = HJ, γ + X = EJ, y1 + 2α = JK, γ — x = JG, so wird .
No. 28 S. 92. Ist ABDC das gegebene Viereck, und A + D = 180°, B + C = 180°, PQ AC, ST AB; so hat man in diesem Falle PQ · PR = PS · PT. Sind nun Pg, Pr, Ps, Pt respective perpendikulär auf AB, CD, AC, BD; so wird S = A = Q; sin R = sin SCD = sin B = sin T, mithin
und entweder
oder
No. 29. S. 101. Um die Linie dg zu construiren, verbinde man G mit O, ziehe aus d die Linie dg' DG, ziehe unter dem gegeben Winkel mit BL hier dg' die Linie dg und mache dg = dg', alsdann ist offenbar g'd : GD = Od : OD oder gd : Od = GD : OD.
No. 30. S. 106. Es ist nämlich, wenn man AC = a, CD = b, AL = x, JL = y setzt (Fig. 58). , und . Ferner EL = Subtg. = . , und oder CA : CL = EC : CA.
No. 31. S. 115. Aus den Proportionen
folgen die später in Anwendung kommenden, und zwar aus 1. BK : AK = HJ : GJ und AB : AK = GH : HJ. Aus 3. folgt Mi : iL = GJ : HJ oder Mi : iL = AK : BK.
No. 32. S. 120. Die der Zeit proportionale Fläche ASP ist nach § 68 = 4/3 GH · AS. Die ebenfalls der verwendeten Zeit proportionale Fläche ASp = ⅔AS · Sp = ⅔AS · 2AS = 4/3 AS · AS; mithin verhalten sich die erforderlichen Zeiten wie ASP : ASp = GH : AS.
No. 33. S. 120. Für einen dem Scheitel verschwindend nahe liegenden Punkt π drückt Aπ die Geschwindigkeit des Punktes A und Gh die Geschwindigkeit des Punktes G aus, wenn h der Mittelpunkt des durch π gehenden Kreises ist. Die Fläche ASπ ist nun nach §. 68., Gl. 5. = 4/3 · Gh · AS, aber sie ist auch, da Aπ verschwindend klein ist = mithin oder Gh : Aπ = 3 : 8.
No. 34. S. 124. Fig. 70. Setzt man OA = a, OS = ae und QOA = E, so wird aus OG : OA = OA : OS, OG = .
Ferner wird GF = OG · E = E sin AQ = a sin E, und daher der Sector AQS proportional e ( E — a sin E) = a (E — e sin E), ein Ausdruck, welcher dem in der theoria motus von Gauss befindlichen entspricht.
No. 35. S. 124. Fig. 71. Setzt man B = · 57°.29578 = e", wo e = sin φ und e" = e · 57°,29578, N = M, L = ,
No. 36. S. 125. In der Theorie motus befindet sich die Gleichung .
Setzt man daher hier ACQ = E, AC = a, SC = ae, so wird AQ = aE, das Perpendikel von S auf CQ = SC sin ACQ = ae sin E, und so hier APS = a (E — e sin E), d. h. APS proportional E — e sin E.
No. 37. S. 125. Setzt man der Kürze wegen CK = x, PK = z, CJ = ½e = ½, wo 2a und 2b die beiden Axen der Hyperbel bezeichnen, so ist AJKP = ½ ab log hyp. .
Ferner ist Δ CJA 1/8 e² sin AJC, Δ CKP = ½ xy sin CKP, = ½ · ¼ e² sin AJC, mithin Δ CJA = CKP, und indem man jedes dieser Dreiecke von CAPKC subtrahirt: AJKP = Δ APC.
No. 38. S. 129. Fig. 77. TC als Subtangente ist , wobei BO = AO = a, b die halbe kleine Axe, CP = y, OC = x und die Gleichung der Ellipse ist. Demnach wird TO = TC + CO = — x = und CO : BO = BO : TO wie Gl. 4 im Texte.
No. 39. S. 131. Fig. 80. Es ist Cd = y, Sc = x, SK = p, y² = 2px also .
No. 40. S. 144. Fig. 90. Durch den Unterschied der zwei ersten Kräfte wird der Weg mn, durch die zweite Kraft gleichzeitig der geradlinige Weg rϱ zurückgelegt. Das gesuchte Verhältniss ist daher mn : rϱ. Für die entstehenden Grössen ist aber und , mithin wird das gesuchte Verhältniss mk · ms : kr².
Im Lehrsatz, Gl. 1. und Zusatz 1., Gl. 5. war VCP : VCp = kr : mr = F : G mithin nun mr + kr : kr = G + F : F und mr — kr : kr = G — F : F d. h. (mr + kr) (mr — kr) : kr² = G² — F² : F² oder ms · mk : kr² = G² — F² : F². No. 41. S. 147. Es muss identisch R · G² — R · F² + T · F² — F²X = T³ — 3T² · X + 3T · X² — X³, also R · G² — R · F² + T · F² = T³ und F² = 3T² — 3TX + X². so wie für X verschwindend klein, wo der halbe Parameter R = T wird, d. h. G² : F² = 1 : 3 sein.
No. 42. S. 152. Nach Hansen, Schuhmachers Jahrbuch für 1837 Pag. 121. macht der Mond einen tropischen Umlauf in 27,321882 Tagen, und es bewegt sich seine Apsidenlinie in Einem Tage rechtläufig um 6' 41,0", mithin während eines tropischen Monates 3° 2' 56".
No. 43. S. 157. Dass VP Tangente an der Curve im Punkt P sei, (Fig. 93.) wird analytisch sehr leicht bewiesen. Man kann sieh aber auch wie im Text vorstellen, dass das Element der Curve bei P beschrieben wird, indem die Linie BP sich um B drehet; alsdann ist BP der Radius des osculirenden Kreises und die darauf senkrechte Linie VP Tangente an der Curve.
No. 44. S. 157. Da BV als Durchmesser constant, also sein Increment = ist, so wird das Increment von BV — VP identisch mit dem Decremente von VP.
No. 45. S. 157. Die Cycloïde ausserhalb und innerhalb der Kugel wird jetzt bezüglich Epicycloïde und Hypocycloïde genannt.
No. 46. S. 161. Setzt man den Bogen JH = s, LH = x (Fig. 95.) und nimmt man an, dass JH und KH um gleiche Incremente ds wachsen, so erhält man aus x = r — r cos s, wo der Radius durch r bezeichnet ist, und durch Differentiation
Ferner setze man den Quadranten HK = X, alsdann wird nach 1.
und so nach 1. und 2. dx : dX = r sin s : r = JL : GK. Da nun GK = GH = SR, GL = TR, und JL = .
No. 47. S. 161. Vorausgesetzt, dass HY und HZ als sehr klein angesehen werden dürfen, kann man den letzteren statt seiner Sehne setzen, und es ist HZ² = HY · MH = 2GH · HY, also HZ = oder proportional .
No. 48. S. 178. Die in diesem Zusatze ausgesprochenen Behauptungen in Betreff der Beschleunigung und Verzögerung der Bewegung des Körpers P durch die Kraft NM werden durch die nebenstehende Figur erläutert. Die Tangenten deuten die Richtung der Bewegung im Sinne des Pfeils an, die Kraft NM ist aber so in Seitenkräfte zerlegt, dass die eine der Richtung nach mit der Tangente zusammenfällt. Rechts von C und D wirkt NM im entgegengesetzten Sinne, weil hier QP > QS ist.
No. 49. S. 179. Ist C die Centripetalkraft, R der Radius, T die Umlaufszeit, a eine Constante, so hat man C = a · , also T = . Es nimmt daher T in demselben Verhältniss ab und zu, in welchem zu- und abnimmt.
No. 50. S. 183. Ist Q sehr entfernt von S, so werden die Linien LM und QM in demselben Verhältniss wachsen, wie PS : QS grösser
wird. In diesem Falle wird die Kraft QN sehr klein, und man kann NM = QM — QN statt QM setzen.
Nach der ursprünglichen Voraussetzung sind ferner diese Kräfte proportional . Wenn daher QK und PS constant sind, wird dieses Verhältniss gleich .
No. 51. S. 183. Ist d der constante wirkliche Durchmesser des Körpers Q, ϱ der von S aus gesehene scheinbare Durchmesser desselben; so hat man ϱ = und daher ϱ³ proportional .
No. 52. S. 193. (Fig. 107.) Es ist DF = DS — FS und df = ds — fs, also DF : df = DS — FS : ds — fs. Werden nun die Winkel DPE = FSE und dpe = fse verschwindend klein, so geht FS in ES und fs in es über, und es wird die Proportion
No. 53. S. 193. Die bei der Umdrehung durch den Bogen JH beschriebene Zone ist = 2SA · π · p, wo p den Abstand des Punktes Q von dem Fusspunkte des aus H auf AB gefällten Perpendikels bezeichnet. Denkt man sich dieses Perpendikel gezogen, fällt man auf dasselbe aus J das Perpendikel JM = p und zieht man JS; so ist Δ JSQ ∼ HJM, also SJ : JQ = HJ : p SJ · p = SA · p = JQ · JH und endlich JQ · JH proportional 2SA · π · p. No. 54. S. 195. Die Anziehung der einen Kugel sei = A, der Abstand des Körpers von ihrem Mittelpunkte = Δ, ihr Durchmesser = D. Dieselben Grössen in Bezug auf die zweite Kugel seien a, δ, d. und dabei
wo α eine Constante ist. Nach §. 114. ist
und indem man Δ so in Δ' vermindert, dass
so wird, wenn A' die nun entsprechende Anziehung bezeichnet,
also nach 2. und 4.
No. 55. S. 201. (Fig. 112.) Der Flächeninhalt dieser Zone ist bekanntlich = 2 · PE · π · Dd, also wenn PE constant ist, der Linie Dd proportional.
No. 56. S. 202. Um die Summe aller PD zu bilden, haben wir eine arithmetische Progression zu betrachten, deren erstes Glied = PD, letztes = PF und Differenz = Dd ist. Mithin wird die Summe aller PD = und das Produkt dieser Summe in Dd = ½(PF + PD)(Dd + PF - PD) und wenn wir Dd gegen PF — PD = DF vernachlässigen: = ½(PF² — PD²). Kürzer erhalten wir, indem wir PD = x und Dd = dx setzen xdx = ½(PF² — PD²).
No. 57. S. 205. Im Punkte A wird ALI = AL, im Puncto D wird DLII = DL, im Puncte B wird BLIII = BL und die beschriebene Fläche
Dasselbe ergiebt sich auch kurz folgendermassen, indem man die unbestimmte Ordinate LII D = y und nach der Voraussetzung = der Abscisse LD = x setz. Hiernach wird die beschriebene Fläche
No. 59. S. 206. Dies ergiebt sich unmittelbar wie im ersten Beispiel.
No. 60. S. 206. Setzt man LD = x, so wird die zu findende Fläche bestimmt durch .
No. 61. S. 206. Setzt man nämlich wieder LD = x, so erhält man nach der Reihe: ; ; .
No. 62. S. 207. Denkt man sich von L eine Tangente LT an den Kreis gezogen (Fig. 116.), so wird LA · LB = LT² = LS² — ST² = (LJ + JS)² — AS² = LJ² + 2LJ · JS + JS² — AS² = LJ² + PJ · JS + JS² — AS² = LJ² + JH² + JS² — AS² = LJ² + SH² — AS² mithin LA · LB = LJ² oder
Hieraus folgt LA : LJ = oder
und ebenso LB : LJ = , oder
Bringt man nun die drei Glieder im vorliegenden Beispiele unter gleiche Benennung, so erhält man zunächst den Ausdruck:
oder, weil LA = LS — AS, LB = LS + AS und LB + LA = 2LS, jener Ausdruck .
No. 63. S. 208. (Fig. 116.) Die beiden einzelnen Verhältniss sind hier und, das zusammengesetzte also
No. 64. S. 208. Wir haben in diesem Falle die einzelnen Verhältnisse und , als das zusammengesetzte = PS : JS = PS² : AS².
No. 65. S. 208. Aus und folgt durch Zusammensetzung .
No. 66. S. 208. Es ist Δ SPE ∼ SEJ, weil JS : SH = SH : PS d. h. JS : SE = SE : PS und JSE = PSE.
No. 67. S. 208. Es ist nämlich JE : PE = JS : SA = SA : PS = JS½ : PS½ mithin JEn : PEn = .
No. 68. S. 209. (Fig. 117.) Ist r der Radius der Engel, x die Höhe des Segments, so hat man den Flächeninhalt der Calotte = 2rπ · x, und daher die oben bezeichnete physische Fläche von der Dicke O = 2rxπ · O, mithin proportional rxO.
No. 69. S. 215. Setzt man PF = x, FK = y, so wird (Fig. 120.) .
No. 70. S. 215. Hier wird
No. 71. S. 215. Es ist nämlich PH = PD = , wo AP constant. Wenn daher AD = ∞ ist, so wird auch PH = ∞, und so für n > 1, .
No. 72. S. 216. (Fig. 121., I.) Setzt man PT = x, so wird 1 · dx = 1(PB - PA) = 1 · AB.
No. 73. S. 216. (Fig. 121., II.) Setzt man AD = RT = EB = r, so wird und
= (PE + C) — (PD + C) = PE — PD.
No. 74. S. 217. (Fig. 122.) Setzt man der Kürze wegen AP = α. AS = SB = b, PE = x, PD = ER = z, so ist nach §. 136., Zusatz 1. die Anziehung des Punktes P durch das Sphäroïd proportional
Man setze ferner ED = y, SC = a; alsdann wird
und hieraus
oder
Aus 3. folgt für x = α, bx = bα, und für x = α + 2b, bx = b (α + 2b). Da nun allgemein
ferner
oder aus dieser
so wird
Es ist aber AKRMB = AKMB + KMRK = 2b(α + b) + KMRK; mithin aus 6.
Weil aber α² + 2αb + a² = (α + b)² + a² — b², wird die Anziehung des Sphäroïds proportional
Ist hingegen eine Kugel über AB beschrieben, so wird bei der vorhergehenden Bezeichnung
für x = α, z = α, x = α + 2b, z = α + 2b und da allgemein
Hiernach verhält sich endlich die Anziehung des Sphäroïds zu der von Seiten der Kugel auf P ausgeübten Anziehung, wie
No. 75. S. 219. Setzt man CH = x, HM = y, so wird y = und daher die Fläche GLOK = also weil = 0, GLOK = .
No. 76. S. 221. Es sei x² = py, also y = ; alsdann wird und = Constans, und es drückt die Kraft aus, welche den Körper längs der Linie y anzieht.
No. 77. S. 221. Die Gleichung der Hyperbel in Beziehung auf die Asymptoten ist y = und hieraus , also nach der Bezeichnung im Texte die Kraft proportional . Derselbe Werth ergiebt sich, wenn man die Werthe m = — 1 und n = 1 in substituirt. Hingegen würde aus der Substitution derselben Werthe von m und n in der Werth B³ hervorgehen. Hiernach müsste, wenn ich nicht irre, der Schluss der Anmerkung im Texte geändert werden.
No. 78. S. 222. Vergl. §. 140.No. 79. S. 222. Ist HC VW, wo VW die Hauptaxe der Parabel ist, so haben wir nach §. 31., Bemerkung. . Hier ist p der Parameter der Hauptaxe und α der Winkel, welchen die Tangente HM mit der Hauptaxe bildet. Da nun MJ = und x', MH = und y'; constant = P; so ist auch HM² = P · MJ. Zieht man eben so in J eine Tangente JL, nimmt MJZ als Durchmesser an und zieht man HZ JL; so ist MZ die Subtangente der Tangente MH in Bezug auf diesen Durchmesser als Abscissenaxe, und nach derselben Weise wie bei rechtwinkligen Coordinaten und der Hauptaxe als Abscissenlinie wird hier diese Subtangente MZ = 2 · JZ also MJ = JZ und somit ML = LH.
No. 80. S. 225.
Genauer nach | Delambre | 493s,198 |
„ | Struve | 497,827. |
No. 81. S. 227. Ist nämlich TR perpendikulär auf die Curve CDE so stellt PDR = TDA den Eintritts- RDS hingegen den Austrittswinkel dar. Wenn nun DP = DS, ferner PQ und SR auf DR senkrecht
sind, so ist der Eintrittssinus und der Austrittssinus. Da aber DE auf DR und EF auf DP senkrecht ist, so wird Δ DEF ∼ DPQ.
Ferner wird, da DE auf DR und EG auf DS senkrecht ist, auch Δ DEG ∼ DSR. Da nun der Eintrittssinus = und der Austrittssinus = ; so hat man DF : DG = Eintrittssinus : Austrittssinus.
No. 82. S. 231. Ist die ganze Zeit t = nτ gesetzt, wo n beliebig gross, so bilde man folgendes Tableau:
Zeittbeile: | τ, | 2τ, | 3τ, | 4τ, | etc. . . | nτ |
Geschwindigkeiten: | v, | vI, | vII, | vIII, | etc. | |
Decremente der Geschwindigkeit: | av, | avI, | arII, | avIII, | etc. |
Alsdann ist
v — av = vI, vI — avI = vII, vII — avII = vIII, vIII — avIII = vIV = etc.,
also auch
v : v — vI = vI : vI — vII = vII : vII - vIII = vIII : vIII — vIV = etc. =
und nach §. 2. v : vI = vI : vII = vII : vIII = vIII : vIV = etc.
No. 83. S. 231. Aus dem vorhergehenden Tableau erhält man z. B.
eben so vIV : vVIII = ; mithin vIV = a4v, vVIII = a4 · vIV = a8 · v.
No. 84. S. 231. (Fig. 133.) Setzt man CD = x und DG = y, so ist die Gleichung der Hyperbel
Die hyperbolische Fläche wird daher
Eine zweite hyperbolische Fläche sei
Setzt man nun voraus, dass AI — A = Constans sei, so wird offenbar log. (xIa) — log. (xa) = log. = Constans oder auch
No. 85. S. 233. (Fig. 135.) Nach den Lehren der Kegelschnitte ist für eine Hyperbel CK · Kq = CA · AB = Constans, also CK : CA = AB : Kq, CA : CA — CK = Kq : Kq — AB, d. h. CA : AK = Kq : qk und hieraus CA : ½AH = Kq : ½qk.
No. 86. S. 233. Es ist nämlich
No. 87. S. 234. Wenn
ist, so wird auch
d. h.
wie aus der Bemerkung 84. hervorgeht. No. 88. S. 234. Aus ABqK : Bkq = ½AK, qKlr : gktr = AC : ½KL, rLMs : rlms = AC : ½LM, sMNt : smnt = AC : ½MN etc. etc. folgt für gleiche Intervalle, wo ABqK = qKLr = rLMs = sMNt = etc.
Bkq : gklr : rlms : smnt : etc. = AK : KL : LM : MN : etc. Das zweite fortlaufende Verhältniss ist mit dem in Bemerkung 84. identisch.
No. 89. S. 234, Z. B. Bms = ABsm — ABmM.
No. 90. S. 234. Ist R der ganze Widerstand im Anfange der Bewegung, welcher der Geschwindigkeit DP proportional ist, so wird der, der nach oben gerichteten Bewegung entsprechende und CP proportionale, Widerstand R(a) und man hat, wenn G die Kraft der Schwere bezeichnet,
also
No. 91. S. 236. Die Proportion QB : CK = DA : AC ergiebt sich, wie in §. 3. aus AC · AB = DC · DG oder AC : DC = DG : AB.
No. 92. S. 236. Drückt AB diese Geschwindigkeit, BC die ihr entsprechende Fallgeschwindigkeit aus, so ist der Parameter = .
No. 93. S. 237. Man setze den Parameter = p, die Kraft der Schwere constant = g, den Widerstand = r, die Geschwindigkeit = v; alsdann ist, wenn a, b, c constante Grössen bezeichnen, 2 · DP : p = g : r (Gl. 11.), p = av², r = bv, 2 · DP = = cv also der Geschwindigkeit proportional.
No. 94. S. 210. Aus der Gleichung der Hyperbel yx = c folgt, wenn die auf einander folgenden Werthe von x x, ax, a²x, a³x etc. sind, dass die entsprechenden Werthe von y werden:
Die erstern Werthe stehen daher in dem fortlaufenden Verhältniss 1 : a : a² : a³ : etc., die letzteren in dem umgekehrten:
1 : : etc. Ferner hat man (Fig. 139.)
also
No. 96. S. 241. Dies folgt aus §. 7.
No. 97. S. 242. Bezeichnet man die anfängliche Bewegung durch M, die Zeit durch T, den während der letzteren verlorenen Theil der Bewegung durch μ, die Zeittheilchen durch τ', τ", τ'" etc., die ihnen entsprechenden Verluste der Bewegung durch μ', μ", μ"' etc., den Widerstand durch R, und sind a, b, c, d, f etc. constante Grössen, so hat man μ = aRT, und damit μ = bM sei, muss RT = cM sein, mithin T = c · . Demnach wenn τ' = c · ; μ' = aRτ' = f · M und auch M — μ = (1 — b) M = f · M, proportional M.
Sind ferner V und v die Geschwindigkeiten beider Körper, T und t ihre Zeiten, S und s ihre Wege, M und m ihre Bewegungen; so hat man S : s = V · T : vt und da V : v = M : m auch S : s = MT : mt.
No. 98. S. 242. Zur vorhergehenden Bezeichnung komme C als Masse und D als Durchmesser, alsdann ist M = a · VC = bVD³, R = cD² · V², T = d · = f · , S = gV · T = hD.
No. 99. S. 242. Bei der vorhergehenden Bezeichnung ist hier R = aD3/2 ·V², T = b · , S = cVT = cV · b . = dV · = h · D3/2.
No. 100. S. 243. Das im Original gebrauchte Wort Genita glaube ich am passendsten durch das Wort Function ausdrücken zu können. Das Wort Momentum habe ich zunächst in deutscher Form beibehalten, da aber aus dem Lehnsatz hervorgeht, dass momentum genitae, oder nach meiner Ausdrucksweise, das Moment einer Function mit dem Differential der letzteren identisch ist; da ich mich ferner in meinen bisherigen Bemerkungen der allgemein gebräuchlichen Bezeichnung des Differentials bereits öfters bedien habe; so werde ich mir später auch in der Regel erlauben, im Texte statt der gegenwärtig weniger gebräuchlichen, oder auch wohl in einer anderen Bedeutung verstandenen Benennung Moment die gebräuchliche Differential zu setzen.
No. 101. S. 244. Der Coefficient von A ist hier , das Moment = a, der Cofficient von B ist hier = A, das Moment = b.
No. 102. S. 246. Es sei also A : B = B : C = C : D = D : E = E : F, und C constant, wie auch = M und D = CM, alsdann haben wir A = , B = , E= CM², F= CM³. Wir erhalten hieraus, wenn m das Moment (Differential) von M, a, b, d, e, f die Momente A, B, D, E, F bezeichnen, nach §. 10. Lehrsatz:
also a : b : d : e : f = — 2A : — B : D : 2E : 3F.
No. 103. S. 246. Aus A : B = C : D folgt, wenn B und C constant sind AD = BC = Constans, mithin Ad + aD = 0 und a : d = — A : D.
No. 104. S. 246. Aus A² ± B² = Constans folgt: 2aA ± 2bB = 0 und a : b = ± B : A.
No. 105. S. 246. In den beiden ersten Ausgaben dieses Werkes befand sich statt der Anmerkung, §. 11. die folgende: In Briefen, welche ich vor etwa 10 Jahren mit dem sehr gelehrten Mathematiker G. G. Leibnitz wechselte, zeigte ich demselben an, dass ich mich im Besitz einer Methode befände, nach welcher man Maxima und Minima bestimmen, Tangenten ziehen und ähnliche Aufgaben lösen könne, und zwar lasse sich dieselbe eben so gut auf irrationale, als auf rationale Grössen anwenden. Indem ich die Worte versetzte, welche meine Meinung (wenn eine Gleichung mit beliebig vielen veränderlichen Grössen gegeben ist, die Fluxionen zu finden, und umgekehrt) aussprachen, verbarg ich dieselbe. Der berühmte Mann antwortete mir darauf, er sei auf eine Methode derselben Art verfallen und theilte mir die seinige mit, welche von meiner kaum weiter abwich, als in der Form der Worte und Zeichen, den Formeln und der Idee der Erzeugung der Grössen. Die Grundlage beider Methoden ist im vorhergehenden Lehnsatze enthalten.
No. 106. S. 248. Aus AC : AP = (Fig. 142.) folgt nämlich, wie im §. 12., Lehrsatz AP = .
No. 107 S. 248. Eigentlich haben wir (Fig. 143.) ADv : pDq = Dt Dv : Dp Dq — Dt²: Dp · Dq. Da aber Dp und Dq nur wenig von einander verschieden sind, kann man ADv = · Dt² setzen.
No. 108. S. 260. In Bezug auf die Hyperbel ATZ ist AD = a, die halbe Axe = der sogenannten halben Zwergaxe AC, AX = x, TX = y, und es geht die allgemeine Gleichung der Hyperbel y² = (x² — a²) in diesem Falle über in y² = x² — a² oder x² — y² = a². No. 109. S. 250. Aus AP² = AC · AK, folgt, weil AC constant ist, 2AP · d · AP = AC · d · AK d. h. 2AP · PQ = AC · KL oder KL : PQ = 2AP : AC.
No. 110. S. 253. (Fig. 144.) Da HJ² = HM² + MJ² und HN² = HM² + (MJ — JN)² so wird ; , und weil JN sehr klein ist oder HJ — HN = .
No. 111. S. 253. Es ist beliebig MJ = Qξ + Rξ² + Sξ³ .... angenommen worden, hieraus folgt unmittelbar, weil NJ = MJ — MN und MN = Qξ ist, NJ = Rξ² + Sξ³ + etc.
Der Werth von MJ gilt allgemein für jeden Werth von ξ, mithin wird der entsprechende Werth in E für ξ = 2ξ 2Qξ + 4Rξ² + 8Sξ³ etc. in B für E = — ξ, — Qξ + Rξ² — Sξ³ und so DJ = CH — MJ = P — Qξ — Rξ² — Sξ³; EK = CH — 2Qξ — 4Rξ² — 8Sξ³ — etc. = P — 2Qξ — 4Rξ² — 8Sξ³ — etc. BG = P + Qξ — Rξ² + Sξ³ — etc.
No. 112. S. 254. Nach Gl. 12. und 10. ist (Fig. 144.) · GH =
nach Gl. 10. nach Gl. 8. 9. und 10.
mithin und nach 6. der Widerstand : Schwere .
No. 113. S. 254. Für CH als Durchmesser ist nämlich NJ = x die Abscisse, HN = y die Ordinate, und da allgemein die Gleichung der Parabel y² = px ist, .
No. 114 S. 254. Im Anfang dieses Paragraphen haben wir gesehen, dass die Zeit, in welcher der Körper den Bogen beschreibt, im halben Verhältniss der Höhe NJ steht, welche der Körper beim Falle von der Tangente HN in derselben Zeit beschreiben könnte. Nennt man jene kleine Zeit τ so ist , wo α constant. Die Geschwindigkeit, womit HJ beschrieben wird, ist daher
, d. h. proportional und ihr Quadrat proportional .
Bezeichnet man ξ durch Δx, so wird nach dem Taylor’schen Satze die obige Reihe allgemein:
also , , die Dichtigkeit des Mittels proportional .
No. 115. S. 255. Die hier im Text erwähnte Methode besteht offenbar in der Anwendung des binomischen Lehrsatzes. Es wird also
No. 116. S. 257. Setzt man FA = X, AQ = Y, FG = x, GJ = y, wo JG AQ; so hat man Y² = bX, y² = bx mithin Y² - y² = (Y + y) (Y - y) = b(X — x) oder PD · QD = b · JD. Hierbei ist der Parameter b constant.
No. 117. S. 258. Dieses Verhältniss ist nach der obigen Regel 13 §. 14. für den Punkt g, wo ξ = 0, 3S ·
No. 118. S. 258. Dieser Parameter ist nämlich nach §. 14.
No. 120. S. 261. Denkt man sich nämlich, in Bezug auf die Asymptoten XV und XT als coordinirte Axen, XP = x, PG = y als Coordinaten des Punktes G und die Tangente GT gezogen; so ist die Subtangente PT = x = PX. Demnach wird, wenn man VG XT zieht, erstere verlängert, bis VY = VG wird und hierauf XY zieht, im Viereck XYGT YG = XT und YG XT, also auch XY GT und XY = GT.
No. 121. S. 262. Bezeichnet man die Geschwindigkeit durch V, so ist V proportional ; also weil AH constant ist, AJ proportional
No. 122. S. 262. Die Dichtigkeit in A ist proportional , die in G proportional , die mittlere Dichtigkeit also proportional ; und so die Dichtigkeit in A zur mittleren wie = GT : ½(AH + GT).
No. 123. S. 262. Setzt man XY = y, AJ = x, so hat man die Gleichung der Hyperbel xyn = Constans; mithin wird , die Subtangente = + nx und HX = x + Subtangente = (n + 1) x = (n + 1) AJ.
No. 124. S. 264. (Fig. 151.) Wird AK = AE + EK = EK + KN + EN = e, AG = y, NK = AE = X, HN = Y gesetzt, so hat man AC : AE = NH : EN d. h. y : X = Y : x und xy = XY = Constans. Es liegt demnach H auf dem conjugirten Zweige derjenigen Hyperbel, auf welcher C sich befindet.
No. 125. S. 265. Setzt man JX = y und AJ = x, so ist die Gleichung der vorliegenden Parabel = Constans, während die Gleichung der vorhin erwähnten Hyperbel x · yn = Constans war. Offenbar hat man in der letzten Gleichung — n statt + n zu setzen, damit dieselbe in die vorhergehende Gleichung der Parabel übergehe. Durch eben diese Vertauschung erhält man den für den Parameter angegebenen Werth aus dem im Anfange dieses §. für die Hyperbel aufgestellten Werthe. No. 126. S. 268. (Fig. 154.) Man kann hier 2 AB · AP statt AP setzen, weil 2AB constant ist.
No. 127. S. 268. Es ist nämlich DPQ = , also proportional PQ, weil ½DB constant ist.
No. 128. S. 269. Die Gleichung der Hyperbel in Bezug auf ihren Mittelpunkt ist nämlich allgemein y² = (x² — a²). Im vorliegenden Falle ist aber y = TG, x = DG, b = BD = DF = a, GT² = DG² — DF².
No. 129. S. 273. (Fig. 160.) Offenbar ist V der mit dem Radius DA, aus D als Mittelpunkt beschriebene Bogen AG.
No. 130. S. 273. Eigentlich DET². Es ist aber DET = ½ET · DE = ½ V, also, insofern DE = DB und auch DA constant sind, DET² proportional V².
No. 131. S. 276. Es ist unmittelbar TQ : PD = TS : PE. Fällt nun Q mit P zusammen, so geht gleichzeitig T in P über und man kann PS statt TS setzen; es entsteht daher
No. 132. S. 276. (Fig. 161.) OP und OQ stehen nach der Voraussetzung auf der Spirallinie perpendikulär, und wenn die Punkte P und Q einander unendlich nahe liegen, werden beide sich auf dem Kreise befinden, welcher aus O mit OP = OQ als Radius geschlagen ist. Indem man in diesem Falle den unendlich kleinen Bogen PQ statt seiner Sehne setzt, ergibt sich nach bekannter Weise PD : PQ = PQ : 2PO.
No. 133. S. 277. Bezeichnet man die gleichen Winkel durch α, so wird, in so fern man die kleinen Bogen PQ und Qr als gerade Linien behandeln darf, PSQ = ½PS · PQ sin α, QSr = ½QS · Qr sin α und daher, weil PSQ = QSr, PQ : Qr = QS : PS.
No. 134. S. 277. (Fig. 161.) Es ist SV — SQ = VQ, also SP = SQ + VQ, wo VQ desto klein er wird, je näher P und Q einander kommen. Demnach wird SP — = SQ + VQ —
=Je kleiner nun VQ wird, desto mehr wird man die folgenden, höhere Potenzen von VQ enthaltenden, Glieder gegen das erste vernachlässigen können, und wir erhalten daher den Grenzwerth von SP — = ½VQ.
No. 135. S. 277. Diese Aehnlichkeit dürfte folgendermaassen zu erläutern sein. Da SV = SP, so ist SVP = SPV. Je näher nun Q an P rückt, desto kleiner wird der Winkel PSQ, und im Fall dieser verschwindend klein geworden ist, wird
Ferner ist im letztern Falle SPV = QPO = 90°, und zieht man hiervon ab SPQ = SPQ, so bleibt 2. QPV = OPS.
Es sind daher in den Dreiecken VPQ und OPS zwei Winkel einander gleich, mithin auch POS = PQV = SVQ.
No. 136. S. 277. Siehe erstes Buch, § 18, Zusatz 1.
No. 137. S. 278. Es wird alsdann ½VQ = ½PQ oder VQ = PQ. Der Körper nähert sich daher dem Centrum um eben so viel, als er sich fortbewegt. Die Bewegung erfolgt demnach längs PS.
No. 138. S. 278. Dies Verhältniss ist mit dem PQ : VQ identisch. (Gl. 8.)
No. 139. S. 279. Das Verhältniss PS : OS ist nach dem Lehrsatz = PV : VQ. In so fern nun PSV sehr klein ist, wird PV gleich dem aus S mit SP geschlagenen Bogen, und daher jenem Winkel proportional, während VQ die entsprechende Annäherung des Körpers zum Centrum S bezeichnet. Hieraus ergiebt sich, wenn der Winkel, welchen der Körper beschreiben muss, um von der einen Peripherie zur andern zu gelangen, durch α und der Abstand beider Peripherien durch a bezeichnet wird, α : PSV =a : VQ oder α = a · = a = a.
Das Verhältniss OP : OS ergiebt sich als der Zeit proportional unmittelbar aus Zusatz 5.
No. 140. S. 279. (Fig. 162.) Da nämlich AS : BS = BS : CS = CS : DS = etc. so wird auch
AS3/2 : BS3/2 = BS3/2 : CS3/2 = CS3/2 : DS3/2 = etc. Setzt man nun etwa = q, so wird AS3/2 + BS3/2 + CS3/2 + DS3/2 + .... in inf. =
und so
um so näher, je kleiner AB ist, indem alsdann die höhern Potenzen von AB vernachlässigt werden können.
No. 141. S. 280. Die Centripetalkraft ist proportional , ferner das Stück TQ proportional · t² (wie in §. 22., wo t die Zeit bezeichnet), also t umgekehrt proportional (§. 20.) = PQ · SP½n. Ferner der Widerstand in P proportional . Da nun PQ : QR = und PQ : Qr = QS : SP, so wird PQ : Rr = QS : Es ist aber PS = QS + VQ und = [QS½n + ½nQS½n-1 VQ + ....] QS1-½n = QS + ½nVQ + etc. Je kleiner nun VQ wird, desto eher wird man die folgenden höheren Potenzen gegen die erste vernachlässigen können. Es ergiebt sich also zuletzt PS — = QS + VQ — QS — ½nVQ = (1 — ½n)VQ.
Der Widerstand wird hiernach proportional
, indem man QS = PS setzt. Da nun auch der Widerstand proportional Dichtigkeit, so wird die Dichtigkeit proportional SPn Widerstand, also .
No. 142. S. 288. (Fig. 165.) AH drückt die Dichtigkeit, d. h. die Menge materieller Theile in A aus, deren jedes nach der Voraussetzung durch eine, proportionale, Kraft gegen S hin gezogen wird; daher muss AH · dasjenige ausdrücken, was man das specifische Gewicht nennt. Da ferner SA : SB = SB : SC = SC : SD = etc., so ist auch
d. h. AB : BC : CD: etc. = SB : SC : SD : etc., = SA : SB : SC : etc und so proportional proportional proportional u. s. w.
No. 143. S. 289. Ist SQ : SE = SE : SA, oder log SQ — log SE = log SE — log SA, so wird, weil EeqQ = n [log SQ — log SE] und EeaA = n [log SE — log SA], wo n eine beliebige Constante bezeichnet, Fläche EeqQ = EeaA.
No. 144. S. 291. (Fig. 167.) Eine harmonische Progression bilden die Glieder , etc.; soll also SA = , SD = , SF = sein, so wird oder 1. . Da nun ferner Aa : Dd = SD : SA und Dd : Ff = SP : SD, so wird 2. Aa — Dd = · Dd und Dd — Ff = · Dd, also nach 1. Aa — Dd = Dd — Ff. Aus thlx = xlnz folgt St : Sx = Sx : Sz nach Bem. 143.
No. 145. S. 291. Wenn n, nI, nII, nIII, nIV constante Zahlen bezeichnen, so hat man hier die Schwere = , etc. die Dichtigkeit = nIAH, nIBJ, etc. das specif. Gewicht = , , etc. die Drucktheile = , etc. = , etc. weil AB : BC etc, = SA : SB etc. Hiernach AH — BJ =
und tu : uw : wx etc. = etc. Da nun für die Rechtecke tp, uq, wr die Verhältnisse tp : uq: wr = th · tu : uw · iu : wx · rx = th · : ui · : rx · = (nach §., 30., Gl. 1.) stattfinden; so muss nach der Analogie mit §. 30., wie dort GL 2. hier die Gleichung richtig erwiesen werden. Da nun aber allgemein Aa · AS = Dd · DS = Ff · PS also Aa = Ff = ; so wird durch Substitution dieser Werthe von Aa und Ff die vorstehende Gleichung übergehen in welche hier vorausgesetzt wird.
No. 146. S. 292. Wir verfahren, wie in der vorhergehenden Bemerkung 145, vergrössern aber die Exponenten um 1; alsdann erhalten wir die Bedingung welche hier vorausgesetzt wird.
No. 147. S. 292. Wegen der constanten Schwere sind die Drucktheile nach der Reihe : AH · AB, BJ · BC, CK · CD, etc. oder, weil nach der Voraussetzung SA — SB = SB — SC = SC — SD = etc. = AB = BC = CD = etc so werden sie AH · AB, BJ · AB, CK · AB etc.
Die Dichtigkeit | AH ist mithin proportional | [ | AH + | BJ + | CK + etc.] AB |
BJ „ „ „ | [ | BJ + | CK + etc.] AB | ||
CK „ „ „ | [ | CK + etc.] AC |
und wenn n eine Constante bezeichnet AH — BJ = n · AH · AB oder BJ = AH (1 — n · AB); BJ — CK = n · BJ · AB oder BJ = CK : (1 — n · AB) also BJ² = AH · CK oder AH : BJ = BJ : CK.
No. 148. S. 292. Hier wird die Schwere = nAS, etc. die Dichtigkeit = nI · AH, etc. das spec. Gewicht = nIIAH · AS, etc. der Drucktheil = nIIIAH · AS², etc, tu = AH — BS = nIII AH · AS²; uw = BJ — CK = nIIIBJ · BS²; tu : uw = AH · AS² : BJ · BS²; tp : uq = th · AH · AS² : ui · BJ · BS²; tp : uq = Aa · AS³ : Bb · BS³ (§. 30 Gl. 1.) Es muss mithin Aa · AS³ — Bb · BS³ = Bb · BS³ — Cc · CS³ d. h. AS³ — Bb · BS³ = Bb · BS³ — oder AS² — BS² = BS² — CS² sein, wie vorausgesetzt. No. 149. S. 292. Hier ist die Dichtigkeit = n · AH, die Schwere = das spec. Gewicht = die drückende Kraft = also nV · = nVIAH4 und so AH = ; hier sind n, nI, . . . . nVII constant.
No. 150. S. 292. Hier ist nV = nVIAH5 also AH = . Aehnlich beim folgenden Beispiel nV · = nVIAH², also AH = .
No. 151. S. 296. Bezeichnen M, P, T, L die Menge der Materie, das Gewicht, die Zeit und die Lange bei einem Pendel, m, p, t, l dieselben Grössen bei einem zweiten; so ist nach dem Lehrsatz, §. 34. für L = l, T² : t² = , für M = m und P = p, T² : t² = L : l daher überhaupt T² : t² = . Hieraus folgt M : m = , wie im Zusatz 5., ferner wird für T = t und M = m, L : l = P : p, wie in Zusatz 4.
No. 152. S. 302. Ist x die Geschwindigkeit, c eine Constante, so hat man nach der Voraussetzung R = ex², mithin dR = 2cxdz, und da x der in einem gegebenen Zeittheilchen beschriebene Weg, und dx, das Increment der Geschwindigkeit der antreibenden Kraft proportional ist, wenn wir das Zeittheilchen durch dt bezeichnen dR proportional x (V — R).
No. 153. S. 302. (Fig. 170.) Fällt RG auf QE, so wird OR = OQ und JGH = JEF und daher die Gleichung · JEF = JGH identisch. Fällt RG auf CT, so wird OR = OC; JGH = JLT, also · JEF = JLT, welche Gleichung nach 1. richtig ist.
No. 154. S. 303. Aus der Proportion dieses Zusatzes folgt
und das Differential des Widerstandes = PJGR — Y = 0.
No. 155. S. 304. (Fig. 171.) Setzt man MC = x, also MN = dx, so wird die Summe aller MN · CM
Setzt man nun eben so DK = y, BD = x, Dd = dx, so wird die Summe aller DK · Dd = ydx = d. h. gleich der Fläche BKVTa. Da nun jene Summen einander gleich, auch BKVTa = ½aB · Aa. No. 156. S. 305. Setzt man kurz die Geschwindigkeit DE im nicht widerstehenden Mittel = Y, die entsprechende Geschwindigkeit DK im widerstehenden Mittel = y; so hat man nahe bei y : Y = Ba : BA, oder y = Y und so BKVTa gleich einer Ellipse.
No. 157. S. 305. Da die Fläche der halben Ellipse = ½OV · BOπ, wo π die Ludolfsche Zahl, also genähert = ist; so wird
oder
No. 158. S. 305. Es wird nämlich 7/11Aa : CB = OV : CB, wo CB der Pendellänge gleich ist und die Schwerkraft ausdrückt, während OV den Widerstand in O bezeichnet.
No. 159. S. 305. Setzt man nämlich VO = x, VL = x', OB = y, KL = y'; so ist nach der Voraussetzung DK = c · DE² = c · DP · Da wo c eine Constante bezeichnet. Da nun DK = VO — VL = x — x'; DB = BO — KL = y — y' und da = aO + OD = y + y', so wird x — x' = c (y² — y'²) die Gleichung einer Parabel, da für x' = 0 und y' = 0 x = cy² wird.
No. 160. S. 307. Setzen wir die im Texte erhaltenen mittleren Differenzen der beschriebenen Bogen = a, = b, = c, = d, = e, = f, so erhalten wir deren Verhältnisse, welche die
Die auf einander folgenden Schwingungen seien A = , B = , C = 15, D = 30, E = 60, F = 120 und es wird offenbar (A : A)² = 1, (B : A)² = 4, (C : A)² = 16, (D : A)² = 64, (E : A)² = 256, (F : A)² = 1024. Während diese Zahlen nach einander im constanten Verhältniss 1 : 4 stehen, nähern sich die vorher aufgeführten Zahlen diesem Verhältniss, indem
No 161. S. 308. Betrachtet man den Widerstand der Kugel als aus drei Theilen bestehend, von denen der erste der Geschwindigkeit V selbst, der zweite ihrer 3/2ten Potenz, der dritte ihrer 2ten Potenz proportional ist;
so ist der Coëfficient des | ersten | nach §. 40., Zusatz | = 7/11, |
„ „ „ „ | dritten Theiles | „ „ | = ¾ |
und weil V3/2 = , der Coëfficient des zweiten Theiles = = 0,69085, oder näherungsweise = 7/10 Texte. No. 162. S. 309. Da die Radien dem Bogen proportional sind, haben wir 121 : 1195/29 = 126 : x, x = 124 + 2,8/29 = 1243/31 sehr nahe.
No. 163. S. 309. Für den Umwälzungswinkel PQN = z und den Radius des erzeugenden Kreises PQ = r, ist bei der Cycloïde DPS, DN = x = sinus versus z = 2r sin ½z², DP = 4r sin ½z, DS = 4r sin ½π = 4r = der Pendellänge; also
No. 164. S. 309. Wir nehmen an, dass der Verlust an Bewegung der Kugel ihrem zurückgelegten Wege proportional sei. Wir haben daher nach dem Vorhergehenden die Proportion 30,656 : 3,4375 = : x und hieraus x = . In der ersten Ausgabe stand
No. 165. S. 311. Wie aus dem Folgenden hervorgeht, kann Newton unter den 5 Schwingungen nur doppelte verstanden haben, welche aus zweimaligen Fallen und Steigen zusammengesetzt waren.
No. 166. S. 319. Ist die Geschwindigkeit = c, der Abstand der Theilchen = r, die Quantität der Materie = q, der Durchmesser = d, die Dichtigkeit = Δ und sind n, n', n", n'" constante Zahlen; so ist der Widerstand R = n . Da nun r = n' · d; q = n"Δd³, so wird R = n · = n"' · c² · d² ·Δ.
No. 167. S. 320. Bezeichnen d, e, f, g respective die Widerstände, welche die Körper D, E, F, G erleiden, so ist d : e = T : V; f : g = T : V, also d : f = e : g.
No. 168. S. 322. Drückt man die Intensität der Kraft, welche das Theilchen des Mittels längs FB ausübt, durch LB aus; so kann man diese in die Seitenkräfte LD und BD zerlegen. Die letztere wirkt längs der Tangente BD und wird die Kugel gar nicht bewegen, die erstere hingegen wirkt perpendikulär gegen die Kugel längs BC und sie verhält sich zur ursprünglichen, perpendikulär gegen den Cylinder wirkenden Kraft, wie LD : BL = BE : BC. Wenn man nun in der Figur des Textes Dm auf BL perpendikulär fällt, so kann man die eben gefundene Kraft DL in die beiden Seitenkräfte nD und mL zerlegen. Erstere wirkt längs Bβ Dm und wird, weil sie von B gegen β wirkt, durch eine ihr entsprechende, aus dem in β aufstossenden Theilchen hervorgehenden Kraft aufgehoben. Die andere Kraft mL allein wird das Bestreben haben, die Kugel längs FB zu bewegen und sie verhält sich zu DL, wie mL : DL = BE : BC; mithin wird mL : BL = BE² : BC². No. 169. S. 323. Fällt man in der Figur des Textes das Perpendikel Hk auf CA und setzt man Hk = bA = EC = y, Ck = x, also bH = Ak = AC — x; so wird BE² = BC² — CE² = AC² — y² und die Gleichung bH = gebt über in AC — x = , d. h. in y² = AC · x, die Gleichung der Parabel. Ferner ist der Cubikinhalt des Paraboloïds = = ½AC³ · π, dagegen der Inhalt des Cylinders = AC³ · π; also das Paraboloïd = ½ Cylinder.
No. 170. S. 323. Setzt man den Widerstand, welchen das Mittel gegen einen, über CEB zur Hohe OS construirten Cylinder ausüben würde, = p · CEB, wo p eine Constante ist; so hat man nach §. 45. den gegen den ganzen Kegel CBS ausgeübten Widerstand
den gegen den kleinen Kegel FGS ausgeübten
endlich den gegen die Fläche FG ausgeübten Widerstand
Hiernach wird der, gegen den abgekürzten Kegel ausgeübte Widerstand
Setzt man nun CO = b, OD = a, DS = x, so wird CEB : FG = (a + x)² : x², also
und ausserdem
Nach §. 4. ist daher der Widerstand
und da p und CEB beide constant, so muss x so bestimmt werden, dass nach gehöriger Reduction
ein Minimum werde. Wir erhalten demnach durch Differentiation
Aus F'(x) = 0 oder Z = 0 folgt
also
Ferner wird aus 8., weil Z = 0,
No. 171. S. 321 Stellt GO BR den Widerstand dar, welchen das Mittel gegen GH ausüben würde, so drückt, wenn man OK auf GR und KL auf OG perpendiculär zieht, OL den gegen GB ausgeübten Widerstand des Mittels aus. Da nun GR parallel der Tangente in N ist, so wird MN · LG den MN entsprechenden Widerstand darstellen und es ist Bedingung, dass derselbe ein Minimum werde, oder da MN gegeben ist, muss
werden. Nun ist
also
also
Die Linien OG und GB sind gegeben, daher muss, wenn LO ein Minimum sein soll, GR² ein Maximum, oder weil
BR ein Maximum werden. Bezeichnet nun a eine später zu bestimmende Constante, so muss MN · LO — a · BR ein Minimum werden. Hieraus ergiebt sich durch Differentiation, weil MN und a constant sind,
und aus 5.
Multiplicirt man nun die drei Gleichungen 6., 7. und 8. in einander, so erhält man
Denkt man sich nun N nach G verlegt, so wird nach dem Schluss der vorhergehenden Bemerkung GR² = GP² = GB² + BP² = 2 · GB²; MN = GB, BR = BP = BG, LO = ½GO, also nach 9. 2a · GB² = — GB² · GO oder a = — ½GO und es geht Gl. 9. mittelst dieses Werthes von a über in
Da aber nach 4. GO = , so wird aus 10. GR4 = 4MN · BR · GB² oder
No. 172. S. 325. (Fig. 174.) Drückt CB die Bewegung aus, welche in der Zeit AB durch den Widerstand verloren geht, so wird der ganze Weg, nach §. 7., Zusatz 1., durch CBEF ausgedrückt. Die dann stattfindende Bewegung wird durch EF bezeichnet, also ist FG verlorgen gegangen. Soll BC den Widerstand im Anfange der Zeit BE, BH den Widerstand am Ende derselben ausdrücken; so muss, weil der Widerstand dem Quadrate der Bewegung proportional ist, wenn BH = α · EF² ist, auch BC = α · BC² sein, wo α constant. Nun ist BH : EF = AB : AE = EF : BC, also BH = · EF² und auch BC = · BC². In ersteren Falle hat also der Widerstand den Theil CH verloren.
No. 173. S. 326. Nach Zusatz 6. ist AB = T, BE = t, BC = M, mithin EF = BC = M, GF = BC — EF = M. Ferner ist BGGE = BC · BE = Mt, BCFE = EF · dAE = also BCFE : BCGE = log . Dieser Logarithme ist ein hyperbolischer, daher muss der Briggsche Logarithme log durch die im Texte aufgeführte Zahl, d. h. das Reciproke des Modulus der Briggschen Logarithmen multiplicirt werden, um denselben in einen hyperbolischen zu verwandeln.
No. 174. S. 327. Bezeichnet t die Zeit, c und c' die Geschwindigkeiten, h und h' die Wege, g = 155/8 Fuss die bekannte constante Fallhöhe; so ist h = gt², c = = 2gt, also auch c = 2 und eben so c' = 2, mithin c : c' = oder h : h' = c² : c².
Entspricht nun der Geschwindigkeit | c | der Querschnitt | s |
„ „ | c' | „ „ | s', |
so ist bei gleicher Zeit t im ersten Falle die Wassermenge m = cst, im zweiten Falle m' = c's't und wenn m = m', cs = c's' oder c : c' = s' : s.
No. 175. S. 330. Bei einer Fallhöhe = h ist die Geschwindigkeit, nach der vorhergehenden Bemerkung, weil die Oeffnung sehr klein ist, c = 2. Diese hat man hier horizontal anzunehmen, und es wird in einer kleinen Zeit t ein Weg
beschrieben. Während derselben Zeit fällt aber der Wasserkörper, vermöge der Schwere, um eine Länge
Eliminirt man t aus 1. und 2., so wird
die Gleichung einer Parabel, deren Parameter = 4h ist. In vorliegendem Falle hat man h = 20", mithin den Parameter = 80" und für y =20",
No. 176. S. 332 (Fig. 176.) Aus JO² = JH · JG, oder JH : JO = JO : JG folgt JH : JO — JH = JO : JG — JO oder JH : HO = JO : OG; hierauf HO + OG : 2HO = JH + JO : 2JH und auch JH + JO : 2JH = JO + JG : 2JO = AB + EF : 2EF.
No. 177. S. 335. (Fig. 178.) Das neben dem Kreise vorüberfliessende Wasser habe die nach unten gerichtete Geschwindigkeit h', und dabei ist der Querschnitt des Raumes, wodurch es fliesst = (EF² — PQ²)π. Die nach oben gerichtete Geschwindigkeit des Kreises sei h, wobei sein Querschnitt = PQ² · π ist Bei gleicher Dauer beider Bewegungen haben wir daher (EF² — PQ²) πh' = PQ²πh, also h : h' = EF² — PQ² : PQ² und hieraus h : h + h' = EF² — PQ² : EF².
No. 178. S. 341. Es bezeichne d den Durchmesser der Kugel, s den Weg, welchen sie zurücklegt, während sie die Hälfte ihrer Bewegung verliert. Alsdann ist EF = ½BC, und weil
Da nun a. a. O. AB = T, BE = t war, AE = 2AB = 2T = T + t, oder t = T. Ist die anfängliche Bewegung BB = M, so hat man nach §. 47, Zusatz 7.
In diesem Falle wird AB · BB = BCGE = Mt, und da allgemein BCGE : AB · BC, wie der Weg, welchen die Kugel mit ihrer anfänglichen Bewegung BC in der Zeit t = BE zurückgelegt hätte, an dem Wege, welchen sie in der Zeit T zurücklegen würde, während welcher ihre ganze Bewegung durch den Widerstand des Mittels angehoben werden könnte; so sind beide Wege in diesem Falle einander gleich, also nach diesem Paragraphen = 8/3d. Demnach geht vorstehende Proportion über in s : 8/3d = 2,30258 .... 0,30103 : 1, woraus s = 1,84d, d. h. s < 2d folgt.
No. 179. S. 342. (Fig. 143.) Es bezeichne V die Geschwindigkeit, welche die Kugel bei ihrem Falle in zusammengedrückter Flüssigkeit während der Zeit P erlangt haben würde. Es sei nun
und man ziehe durch den Punkt T der Hyperbel AVZ, πτ AC, bis die erstere die Hyperbel in τ und die Asymptote DC in π schneidet. Da nun aus TX² = DX² — DA² (§. 13.) = πX² — AC² folgt
also
so wird
und auch
so wie
Da nun ferner πX CA, so ist πX : TX = AC : AP = H : V (Gl. 1.) und so (nach Gl. 6.)
Setzt man DX = x, τX = TX = y, DA = AC = a, so wird Δ ADC
Ferner folgt aus y² = x² — a², dy = und so
endlich
Hier bezeichnet in einen natürlichen Logarithmen, hingegen soll log einen Briggischen bezeichnen. Setzt man nämlich β = 0,4342944819 gleich dem Modulus der Briggischen Logarithmen, so folgt ans Gl. 8.
Ferner ist
und
Der während der Zeit P beschriebene Weg werde durch A, dagegen der von einem beliebigen Körper, in derselben Zeit P mit der Geschwindigkeit H beschriebene, Weg durch S bezeichnet. Alsdann ist in der Figur
also
Ferner wird, wenn man NK = y, CK = x, ¼AC² = α² setzt, yx = α² und
Nach §. 13. ist AC : AP : = AP : AK, also AC : AK = AC² : AP², und daher AC : CK = AC² : AC² — AP² = H² : H² — V² (Gl. 1.)
also wird
Nach §. 13., Zusatz 1. ist ABNK : ADT = A : S, mithin
oder
<centerA log N = S · .Da nun S und 2F die Wege sind, welche die mit der Geschwindigkeit H gleichförmig fortschreitenden Körper in den Zeiten P und G zurücklegen würden; so ist
und
Aus Gl. 14. und 15. folgt demnach A log N = [2L + log N — log 4] d. h. weil oben
Mittelst des Werthes von β = 0,4342944619 und log 4 = 0,6020599913 wird = 4,60517086, = 1,3862945611, also A, oder die in der Zeit P zurückgelegte Höhe
Ist A sehr gross, so dass AP in §. 13. der Linie AC sehr nahe gleich wird, so fällt nach Gl. 7. πτ² sehr gross im Vergleich mit AC² aus, d. h. es wird nach Gl. 8. N sehr gross und kaum grösser als 1. Hiernach wird ferner L = log sehr nahe = 0 und man kann daher in Gl. 17. das Glied 4,60517086 LF vernachlässigen.
No. 180 S. 343. Ein Körper verliert, wie wir oben in Abschnitt V. gesehen haben, wenn er in Wasser eingetaucht wird, so viel von seinem Gewicht, als ein Wasserkörper von gleicher Grösse wiegt. Hiernach wird das Gewicht einer beliebigen Wasserkugel dem Unterschiede des Gewichtes einer gleich grossen Kugel im leeren Raume und im Wasser gleich sein.
No. 181. S. 343. Ist dieser Durchmesser d, so wird d = 1" · = 0,84224 Zoll. No. 182. S. 344. Zur Erläuterang der im Texte aufgeführten einzelnen Rechnungen, diene Folgendes. Aus 2,24597 : 2F = 7913/38 : 15613/38 folgt 2F = 4,4256 Zoll. Für den Fall der 15613/38 Gran im leeren Raume wiegenden Kugel, ist das beim Falle der Körper vorkommende g = 193⅓ Zoll. Im Wasser wiegt die Kugel nur 77 Gran, und daher wird die 1 Secunde entsprechende Fallhöhe = · 193⅓ = 95,219 Zoll. Setzt man nun s = 95,219 = g¹ t² = g¹ 1 Sec., F = 2,2128 = g¹ · G², so wird G : 1 = oder G = 0,15244 Secunde. Ferner wird = H = 2g¹G, mithin H · G = 2g¹G² = 2F. Aus der Proportion 0,15244 : 4 = 2F : S, folgt der 4 Secunden entsprechende Weg S = 116,1245 Zoll. Hiervon muss nach §. 60, 1,3862944 F = 3,0676 Zoll subtrahirt werden. Endlich ergiebt sich aus dem im Texte gegebenen Durchmesser = 0",84224 oder Halbmesser = 0,42112 Zoll der grösste Kreis der Kugel = 0,55715 Quadratzoll, der horizontale Querschnitt des Kastens = 81, mithin die zwei einzelnen Verhältnisse und 81 : 80,44285 und hieraus das zusammengesetzte Verhältniss 1 : 0,9914. Der im Text aufgeführte Weg 113,0569 Zoll muss daher in diesem Verhältnisse vermindert oder mit multiplicirt werden und gebt so in 112,08 Zoll über.
No. 183. S. 357. Diess lässt sich noch deutlicher aus einer graphischen Darstellung ersehen. Bezeichnen a, b, c, d, e, f u. s. w. einzelne Theilchen, geben die Pfeile die Richtung der Bewegung an, wobei a, c, e einerlei, b, d, f die entgegengesetzte Richtung haben; so findet im oberen Falle eine Verdichtung, im untern Falle eine Verdünnung der zunächst auf einander folgenden Theile statt. |
No. 184. S. 362. (Fig. 184., 185.) Im ersten Falle
Im zweiten Falle ist Gγ — Eε = (Gε + εγ) — (EG + Gε) = εγ — GE = Pn — Pl = ln oder εγ = GE + In.
No. 185. S. 362. Denkt man sich aus K eine Linie Kn LN und = LN, so wird Δ KHn ∼ JMO, weil die Seiten beider Dreiecke auf einander perpendikulär stehen, mithin Kn : KH = JM : JO oder LN : KH = JM : OP.
No. 186. S. 365. (Fig. 184.) Es ist nämlich HL = sin PH und KN = sin PK. Fällt nun K mit P zusammen, so wird KN = sin O = 0 und es kann HL = sin PH alsdann = PH oder = KH gesetzt werden, weil wegen der Kleinheit der Linie EG der Bogen KH = PH nothwendig sehr klein ist.
No. 187. S. 365. Setzt man die eine Kraft; = 2g, die andere = 2g', die entsprechenden Zeiten = t und t' und den von beiden beschriebenen gleichen Weg = s, so hat man s = gt² und s = g't'² also gt² = g't'² und t : t' = .
No. 188. S. 366. Wir haben nämlich die Proportion
No. 189. S. 367. Nach der im Texte aufgestellten Hypothese kann man die Wasser- und Lufttheilchen einander gleich und = 1 annehmen. Im Wasser liegen sie unmittelbar nebeneinander, nimmt man dagegen den Abstand ihrer Mittelpunkte von einander in der Luft = 9 oder = 10 an, so wird dasselbe Volumen Luft oder , d. h. oder der Menge fester Theilchen enthalten, welche sich im Wasserkörper befinden. Beide Verhältnisse schliessen das im Text angenommene ein.
No. 190. S. 369. (Fig. 186.) Setzt man nämlich SD = x, Dd = y; so wird, weil SQ = ∞ und nach der Construction y = anzunehmen ist, die Fläche DdQ = ydx = + . Es ist also DdQ umgekehrt proportional x oder SD.
No. 191. S. 371. Setzt man allgemein SD = x, Dd = y, C = Constans,
also DdQ umgekehrt proportional SD² und die Umlaufszeit direct proportional SD².
No. 192. S. 374. Im Fall Kugel, Flüssigkeit und Gefäss sich nach Zusatz 7. um eine gemeinschaftliche Axe drehten, sei
die Winkelbewegung | die Umlaufszeit | der Radius | |
für die Kugel | G | γ | S |
für einen Punkt der Flüssigkeit | K | κ | k |
für das Gefäss | E | ε | e; |
alsdann ist nach Zusatz 7.
also auch
ferner
also aus 4. und 5.
oder
Aus 3. folgt
nach 6. u. 7. ist daher
Nach 2 ist
also
Hier bezeichnet K – P die Winkelbewegung der Kugel bei ruhendem Gefässe, also K – P + P = K dieselbe in Bezug auf die entgegengesetzt bewegte Ebene. Es folgt aus 8. oder aus 2. für E = P, K : P = e² : k² und was von dem beliebigen Punkte der Flüssigkeit gilt, gilt auch von jedem andern.
No. 196. S. 377. Statt „Hypothese von Copernicus, müsste hier nach meiner unmassgeblichen Meinung zu lesen sein: „Keplers Gesetzen“.
No. 194. S. 378. Im Berliner astronomischen Jahrbuche für 1871 Pag. 166 folg, findet man beiläufig
log r(♀) | log r'(♂) | |||||||||||
für | die | Fische | oder | die | Länge | 330° | 9,8621 | 0,1404 | r | = 0,728 | r' | = 1,382 |
„ | „ | Jungfrau | „ | „ | „ | 150 | 9,8566 | 0,2216 | =0,719 | =1,666 |
mithin für | 330° | r' – r = 0,654 |
150 | r' – r = 0,947 |
also diese Abstände für die Zeichen der Jungfrau und der Fische nahe im Verhältniss 3 : 2.
No. 195. S. 378. A. a. O. Pag. 9 und Pag. 45 finden wir
für | Länge | ☉ | = 330°, | Δ☉ = 60′ | |
„ | „ | „ | = 150 | Δ☉ = 58 | |
also umgekehrt | für | Länge | ♁ | = 150° | Δ♁ = 60′ |
„ | „ | „ | = 330 | Δ♁ = 58. |
No. 196. S. 382. Nach den neuern Angaben von Hansen in Schumacher’s Jahrbuch für 1837, sind die
Umlaufszeit der vier Trabanten | 1d 18h 28m, | 3d 13h 14m, | 7d 8h 43m, | 16d 16h 42m |
deren gegenwärtiges Verhältniss | 1 | 2,007 | 4,044 | 9,432 |
ihr doppeltes | 1 | 4,028 | 16,351 | 88,958 |
die Abstände | 6,049 | 9,623 | 15,350 | 26,998 |
ihr gegenwärtiges Verhältniss | 1 | 1,591 | 2,538 | 4,463 |
„ dreifaches „ | 1 | 4,026 | 16,341 | 88,910 |
Die zweite Angabe Cassini’s im Text giebt das doppelte Verhältniss der Zeiten | 1 | 4,028 | 16,353 | 88,983 |
das dreifache Verhältniss der Abstände | 1 | 4,006 | 16,354 | 88,991 |
No. 197, S. 382. Hansen giebt a. a. O. die Zahlen:
163107, | 236482, | 390312, | 1377672, | 6853620 | |
ihr einfaches Verhältniss | 1 | 1,450 | 2,393 | 8,446 | 42,02 |
ihr doppeltes Verhältniss | 1 | 2,102 | 5,726 | 71,33 | 1765,6 |
die Abstände der Trabanten nach Cassini | 1,95 | 2,6 | 3,5 | 8 | 24 |
ihr einfaches Verhältniss | 1 | 1,2820 | 1,7950 | 4,1025 | 12,307 |
ihr dreifaches Verhältniss | 1 | 2,107 | 5,783 | 69,05 | 1864,0 |
No. 199. S. 383. Hansen giebt a. a. O. für diesen Werth 17″,1 an.
No. 200. S. 384. Nach Hansen hat man, mit Einschluss der ♀ und des
No. 201. S. 385. Der Exponent 2 + ist von 2 um , von 3 um entfernt, also dem ersteren Werthe näher als dem zweiten im Verhältniss 4 : 239 =
No. 202. S. 386. Da der siderische Monat = 27d 7st. 43m ist, so wird 1m = der ganzen Umlaufszeit in einem Kreise, dessen Durchmesser = 120 Erdhalbmessern ist. Im Text ist der Umfang der Erde = 123249600 Fuss angenommen worden, woraus der Log seines Halbmesser = [7,2926056] folgt. Betrachtet man nun den kleinen, in 1 Minute durchlaufenen Bogen als mit seiner Sehne identisch, so erhält man den gesuchten Sinus versus = x aus der Proportion
wo log r = 7,2926056; also wird x = 15,009 Fuss.
Diesen Weg legt der Mond vermöge der Kraft zurück, welche ihn in seiner Bahn erhält; dieselbe ist der Unterschied der beiden, nach dem Mittelpunkt der Erde und nach dem Centrum der Sonne gerichteten, Kräfte; sie ist daher kleiner, als jene nach dem Centrum der Erde gerichtete und zwar im Verhältniss 17775 : 17875. Vergrössert man daher den für x gefundenen Werth in eben diesem Verhältniss, so erhält man 15,093 Fuss = 15 Fuss 1 Zoll 17/17 Linien Par. Mass.
No. 203. S. 387. Den Radius der Kreisbahn, welchen der Mond um die im Centrum der Bahn unbewegliche Erde beschreiben würde, ist nämlich kleiner, als der Abstand des Mondes vom Mittelpunkte der Erde, wenn ersterer sich um den gemeinschaftlichen Schwerpunkt beider Körper bewegte (§. 101. des ersten Buches). Aus diesem Grunde setzt Newton den Radius jener Bahn nur = 60 Halbmessern, obgleich das arithmetische Mittel der grössten und kleinsten Entfernung nicht kleiner als 60½ Halbmesser ist. Dass er in dieser Sache richtig geschlossen habe, hiervon überzeugte er sich dadurch, dass wenn man jenen Abstand von 60 Halbmessern in demjenigen Verhältnisse vergrösserte, in welchem bei unverändertem Gesetze der Schwere der Abstand des Mondes von der beweglichen Erde jenen Radius übertreffen muss, offenbar eine Länge von 60½ Erdhalbmessern herauskommen muss, wie die Astronomen für diese Entfernung gefunden haben.
Reduciren wir g(t) und g(i) auf den Punkt M, so erhalten wir für erstere und für letztere indem wir SM = Δ, MT = a und MJ = ax gesetzt haben. Wenn wenn wir daher nach 1. g(t) = g(i) setzen, erhalten wir
oder
und hieraus
Vernachlässigen wir a gegen Δ so folgt hieraus
oder genähert
No. 205. S. 393. Bei der folgendermassen ausgeführten Rechnung habe ich Resultate erhalten, welche von den im Texte angegebenen etwas abweichen.
Bezeichnet r den Abstand vom Centralkörper und t die Umlaufszeit, so ist nach der 4. Erscheinung und §. 10.
d | |||||||||
für | die Sonne | und | Venus | r = | 72333 | t | = 224,698 | ||
den | Jupiter | „ | 4. | Trabanten | 520096 sin | 8′ 16″„ | = | 16,689||
„ | Saturn | „ | 6. | „ | 954006 sin 3′ | 4″„ | = | 15,944||
die Erde | „ | der Mond | 100000 sin 10′ 33″ | „ | = | 27,322.
Nach §. 18. Zusatz 2. des ersten Buches wird das Gewicht allgemein ausgedrückt durch . Mithin ist das Gewicht der Venus gegen die Sonne im Abstande 72333 =