MKL1888:Logaríthmus
[869] Logaríthmus (griech.) einer Zahl ist der Exponent, mit welchem man eine feste Zahl, die Basis, potenzieren muß, um die erstere Zahl zu erhalten. Die Logarithmen bilden ein wesentliches, bei größern numerischen Rechnungen kaum entbehrliches, Zeit und Arbeit sparendes Erleichterungsmittel für den praktischen Mathematiker. Der Begriff des L. stützt sich hiernach auf den der Potenz. Letztere tritt zuerst als ein Produkt gleich großer Faktoren auf; lediglich zur Abkürzung schreibt man z. B. ( zur dritten Potenz) statt , und allgemein bedeutet das Produkt aus Faktoren, deren jeder den Wert hat. Die Zahl heißt dabei die Basis und der Exponent. Letzterer ist bei dieser Auffassung der Potenz eine ganze positive Zahl. Allein die Arithmetik erweitert den Begriff der Potenz derart, daß jede beliebige Zahl Exponent sein kann. Es ist nämlich eine Potenz mit dem Exponenten Null der positiven Einheit gleich, , und eine Potenz mit negativem Exponenten gleich der Einheit, dividiert durch die Potenz mit dem gleich hohen positiven Exponenten, also . Eine Potenz endlich mit gebrochenem Exponenten wird berechnet, indem man die Basis auf die sovielte Potenz erhebt, als der Zähler des Exponenten angibt, und dann die sovielte Wurzel (s. d.) auszieht, als der Nenner besagt, wobei die Reihenfolge beider Operationen gleichgültig ist; z. B. . Während aber die Potenzen je nach Beschaffenheit des Exponenten rücksichtlich ihrer Bildung und der Art ihrer Berechnung wesentlich voneinander abweichen, stimmen sie überein in andern Eigenschaften und werden beim Rechnen nach denselben Gesetzen behandelt. Diese gemeinsamen Gesetze sind folgende: 1) man multipliziert zwei Potenzen mit gleicher Basis, indem man ihre Exponenten addiert; 2) man dividiert mit einer Potenz in eine Potenz derselben Basis, indem man den Exponenten des Divisors von dem des Dividenden subtrahiert; 3) man erhebt eine Potenz wieder auf eine Potenz, indem man die Exponenten multipliziert, und 4) man zieht aus einer Potenz eine Wurzel, indem man mit dem Wurzelexponenten in den Potenzexponenten dividiert. Beispielsweise ist also , , , .
Die an den Exponenten vorzunehmenden Operationen sind in allen vier Fällen einfacher als die für die Zahlwerte der Potenzen geforderten. Da man nun eine jede positive Zahl, wenigstens mit beliebiger Annäherung, als Potenz irgend einer andern positiven Zahl, die Einheit ausgenommen, darstellen kann, so liegt der Gedanke nahe, eine feste positive Zahl als Basis anzunehmen und eine Tabelle zu entwerfen, welche zu jeder positiven Zahl den zugehörigen Exponenten oder, wie man dann sagt, den L. dieser Zahl angibt. Eine solche Tabelle heißt eine Logarithmentafel. Mittels solcher Tafeln kann man dann jede Rechnung, mit Ausnahme der Addition und Subtraktion, durch eine einfachere ersetzen. Jede Benutzung einer solchen Tafel zerfällt im allgemeinen in drei Operationen, nämlich 1) das Aufsuchen der Logarithmen zu den gegebenen Zahlen, 2) die Rechnung mit den Logarithmen und 3) das Aufschlagen der Zahlen zu den durch die Rechnung gefundenen Logarithmen. Man nennt die Zahl, die zu einem gegebenen L. gehört, den Numerus und bezeichnet sie durch (numerus logarithmi); es ist also z. B. , weil umgekehrt (L. von ) ist. Das Aufsuchen der Logarithmen zu gegebenen Zahlen und umgekehrt ist eine Operation, deren Ausführung von der Einrichtung der Tafeln abhängt und in der Einleitung derselben gewöhnlich erläutert wird; deshalb kann sie hier übergangen werden. Für die Rechnung mit Logarithmen gelten folgende vier Regeln: 1) Der L. eines Produkts ist gleich der Summe der Logarithmen der einzelnen Faktoren. Ist z. B. gesucht, so hat man bei Anwendung siebenstelliger Tafeln
folglich .
2) Der L. eines Quotienten ist gleich dem L. des Dividenden, vermindert um den des Divisors. 3) Der L. einer Potenz ist gleich dem L. der Basis, multipliziert mit dem Exponenten. Wird z. B. gesucht, so hat man , also, wenn man mit multipliziert, , mithin . 4) Der L. einer Wurzel ist gleich dem L. der Basis, dividiert durch den Wurzelexponenten. [870] Sucht man z. B. , so hat man zunächst , mithin und also . Die in diesen Beispielen benutzten Logarithmen sind gemeine oder Briggssche, d. h. Logarithmen mit der Basis . Dieselben haben folgende Eigenschaften: 1) Die Logarithmen der Zahlen , , , etc. sind ganze Zahlen, nämlich , , , etc., weil , , , ist. Auch die Logarithmen der Zahlen , etc. sind ganze und zwar negative Zahlen, nämlich , , etc., weil , ist, etc. 2) Die Logarithmen aller ganzen Zahlen außer den genannten sind irrationale Zahlen; sie bestehen aus einer ganzen Zahl, der Charakteristik oder Kennziffer, und einem Dezimalbruch, der Mantisse. Letztere entnimmt man aus den Logarithmentafeln; die Charakteristik aber findet man nach folgenden Regeln: 1) Für alle Zahlen, welche größer als die Einheit sind, ist die Charakteristik um eine Einheit kleiner als die Anzahl der ganzen Stellen. Weil also z. B. eine vierstellige Zahl, aber eine zweistellige ist, so hat der L. der erstern , der der letztern als Charakteristik, und es ist , dagegen . Die Mantisse bleibt dieselbe für alle Zahlen, die mit denselben geltenden Ziffern in gleicher Anordnung geschrieben werden; es haben also auch , etc. die angegebene Mantisse. 2) Der L. eines echten Bruches ist negativ; es ist aber zweckmäßig, eine positive Mantisse mit negativer Charakteristik zu schreiben, z. B. . Die negative Charakteristik eines echten Dezimalbruchs ist gleich der Anzahl der Nullen, die links vor der ersten geltenden Ziffer stehen, also . Um bei Subtraktion eines größern L. von einem kleinern eine positive Mantisse zu erhalten, vergrößert man die positive Charakteristik des Minuenden um so viel positive Einheiten, daß die Subtraktion ausführbar wird, bringt aber diese Einheiten als negative Charakteristik wieder in Abrechnung. Soll z. B. berechnet werden, so hat man und ; statt dessen rechnet man aber
also .
Viele Rechner vermeiden das Subtrahieren eines L. von einem andern, indem sie statt dessen das Komplement des L., d. h. den durch Subtraktion des L. von erhaltenen Rest, addieren. In unserm Beispiel hat das Komplement von den Wert . Beim Dividieren eines L. mit negativer Charakteristik muß man letztere so weit vergrößern, daß die Division in ihr aufgeht, während man vorn die gleich große Anzahl positiver Einheiten zusetzt. Um also zu berechnen, setzt man (statt ), und die Division mit gibt nun , also . Vielfach gibt man Logarithmen echter Brüche auch die negative Charakteristik und eine entsprechende positive Charakteristik, schreibt also: ; die läßt man auch häufig als selbstverständlich weg, z. B. bei Logarithmen der trigonometrischen Funktionen. An die Stelle des Komplements tritt bei dieser Schreibweise die dekadische Ergänzung, d. h. der Unterschied des L. und der Zahl .
Die große Wichtigkeit der Logarithmen für rasche und sichere Ausführung aller größern Multiplikationen und Divisionen, namentlich aber für das Potenzieren und Wurzelausziehen, geht schon aus den angegebenen Beispielen hervor. Leider ist der Gebrauch dieses Hilfsmittels noch lange nicht hinlänglich verbreitet. Nicht unwichtig ist für die Praxis die Wahl zweckmäßiger Logarithmentafeln. Bis vor kurzem wandte man fast ausschließlich Tafeln mit sieben Dezimalstellen an, wie solche besonders durch den Freiherrn G. v. Vega in Deutschland eingeführt worden sind. Neuere Tafeln dieser Art sind: Schrön, Siebenstellige gemeine Logarithmen (20. Aufl., Braunschw. 1886); v. Vega, Logarithmisch-trigonometrisches Handbuch, bearbeitet von Bremiker (69. Aufl. von Tietjen, Berl. 1886). Für die meisten Zwecke genügen indessen weniger Stellen, wodurch die Rechnung wesentlich kürzer wird. Tafeln mit weniger Dezimalen sind: Bremiker, Logarithmisch-trigonometrische Tafeln mit sechs Dezimalstellen (10. Aufl., Berl. 1883); Derselbe, Logarithmisch-trigonometrische Tafeln mit fünf Dezimalstellen (4. Ausg., das. 1883); Lalandes Tafeln der fünfstelligen Logarithmen (Leipz. 1870); Schlömilch, Fünfstellige logarithmische und trigonometrische Tafeln (9. Aufl. Braunschw. 1886). – Gewöhnlich genügen fünfstellige Tafeln vollständig, ja in nicht wenigen Fällen auch vierstellige, wie Wittstein, Vierstellige logarithmisch-trigonometrische Tafeln (Hannov. 1860).
Während man beim praktischen Rechnen immer die gemeinen Logarithmen anwendet, kommen in der Analysis die sogen. natürlichen oder hyperbolischen Logarithmen vielfach vor, deren Basis eine irrationale Zahl, nämlich die Summe der unendlichen Reihe ist, welche man mit bezeichnet. Man findet den gemeinen L. einer Zahl, wenn man den natürlichen mit , dem gemeinen L. von , multipliziert, welche Zahl der Modulus der gemeinen Logarithmen heißt, und der natürliche L. ist gleich dem gemeinen, multipliziert mit .
Als Erfinder der Logarithmen gilt Lord John Napier, Baron von Merchiston („Mirifici logarithmorum canonis descriptio“, Edinb. 1611), nach welchem die natürlichen Logarithmen häufig Nepersche Logarithmen heißen, obwohl sie nicht mit den von Napier berechneten identisch sind. Unabhängig von Napier benutzte Jost Byrgi (s. d.) bei seinen Rechnungen selbstberechnete Logarithmen. Die gemeinen Logarithmen wurden zuerst von Briggs (s. d.) berechnet („Arithmetica logarithmica“, 1624). Um dieselbe Zeit haben sich Ursinus und Kepler, später Vlacq, Sharp, Gardiner u. a. mit der Berechnung genauer Logarithmentafeln beschäftigt; die vollständigsten derartigen Tafeln sind auf Anordnung der republikanischen Regierung von Frankreich unter Pronys Leitung hergestellt, aber nicht veröffentlicht worden. – Mit dem Namen Additions- und Subtraktions-Logarithmen (Gaußsche Logarithmen) bezeichnet man Tafeln zur bequemen Berechnung von , wenn und bekannt sind. Dieselben sind zuerst von dem Italiener Leonelli 1803 veröffentlicht, aber erst durch Gauß (1812) in weitern Kreisen bekannt geworden. Vgl. Günther, Vermischte Untersuchungen zur Geschichte der mathematischen Wissenschaft, Kap. 5 (Leipz. 1876).