Zum Inhalt springen

Seite:NewtonPrincipien.djvu/247

aus Wikisource, der freien Quellensammlung
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

genommenen geometrischen Progression, und die Wege, welche in den einzelnen Zeittheilchen beschrieben werden, sind einander gleich.

Der Widerstand des Mittels ist nämlich dem Quadrate der Geschwindigkeit proportional, und es verhält sich das Decrement der Geschwindigkeit wie der Widerstand. Theilt man daher die Zeit in unzählige gleiche Stücke, so verhalten sich die Quadrate der Geschwindigkeiten im Anfange der einzelnen Zeittheile, wie die Unterschiede der einzelnen Geschwindigkeiten.

Fig. 139.

Es seien die auf der Linie CD angenommenen Stücke

AK, KL, LM, etc.

jene Zeittheilchen, und man errichte die Perpendikel

AB, Kk, Ll, Mm, etc.

welche die, zum Mittelpunkte C und den rechtwinkligen Asymptoten CD und CH beschriebene Hyperbel BklmG in den Punkten

B, k, l, m, etc.

schneiden. Alsdann haben wir

1.   AB : Kk = CK : CA

oder

AB — Kk : Kk = AK : CA
AB — Kk : AK = Kk : CA

und

2.   AB — Kk : AK = AB · Kk : AB · CA.

Da nun sowohl AK, als auch AB · CA constant und gegeben sind, so wird AB — Kk proportional AB · Kk

und zuletzt, wenn AB und Kk zusammenfallen,

AB — Kk proportional AB².

Auf dieselbe Weise schliessen wir, dass

Kk — Ll, Ll — Mm, etc.

respective proportional

Kk², Ll², etc.

sind. Die Quadrate der Linien

AB, Kk, Ll, Mm, etc.

verhalten sich demnach wie ihre Unterschiede, und da die Quadrate der Geschwindigkeiten sich ebenfalls wie die Unterschiede der letzteren verhielten; so wird die Progression beider einander ähnlich sein. Ist dies erwiesen, so folgt auch, dass die durch diese Linien beschriebenen Räume in einer ähnlichen Progression mit den, durch die Geschwindigkeiten beschriebenen Wegen stehen.

Wird demnach die Geschwindigkeit im Anfange des ersten Zeittheilchens AK durch die Linie AB, die im Anfange des zweiten Zeittheilchen KL durch Kk, und der im ersten Zeittheilchen beschriebene Weg durch die

Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 239. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/247&oldid=- (Version vom 1.8.2018)