Zum Inhalt springen

Seite:NewtonPrincipien.djvu/297

aus Wikisource, der freien Quellensammlung
Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

immer stetig proportionalen Dichtigkeiten AH, DL, QO etc. dies auch jetzt bleiben,   W. z. b. w.

Fig. 166.

Zusatz. Ist daher die Dichtigkeit der Flüssigkeit in zwei Punkten A und E gegeben, so kann man daraus auf die Dichtigkeit in irgend einem anderen beliebigen Orte Q schliessen.

Man beschreibe nämlich zum Mittelpunkte S und den rechtwinkligen Asymptoten SQ und SX eine Hyperbel, welche die Perpendikel

AH, EM, QT

in den Punkten

a, e, q,

die auf die Asymptote SX gefällten Perpendikel

HX, MY, TZ

in den Punkten

h, m, t

schneidet. Hierauf setze man

ZYmt : YmhX = EeqQ : EeaA,

in welcher Proportion die drei letzten Flächen gegeben sind; alsdann wird die verlängerte Linie Zt die Linie QT der Dichtigkeit proportional abschneiden.

Sind nämlich die Linien SA, SE und SQ stetig proportional, so wird

Fläche EeqQ = EeaA,[1]

daher auch nach obiger Proportion

ZYmt = YmhX,

und so

SX : SY = SY : SZ

oder auch

AH : EM = EM : QT

wie es sein muss. Nehmen die Linien SA, SE und SQ eine andere Stelle in einer Reihe stetig proportionaler Grössen ein, so werden die Linien

AH, EM und QT,

wegen der proportionalen hyperbolischen Flächen dieselbe Stelle in einer anderen Reihe stetig proportionaler Grössen einnehmen.

§. 30. Lehrsatz. Es sei die Dichtigkeit einer Flüssigkeit dem Drucke proportional, welchen die letztere erleidet, und es mögen ihre Theile durch die Schwere, welche dem Quadrat des Abstandes vom Centrum umgekehrt proportional ist, abwärts gezogen werden. Nimmt man nun die Entfernungen in harmonischer Progression an, so stehen die Dichtigkeiten der Flüssigkeit, in eben diesen Entfernungen, in geometrischer Progression.

Es bezeichnet S das Centrum, ferner seien

SA, SB, SC, SD, SE, etc.

die in geometrischer Progression stehenden Entfernungen. Man errichte die Perpendikel

AH, BJ, CK, etc.,

welche den Dichtigkeiten der Flüssigkeit in den Punkten

A, B, C, etc.

  1. [604] No. 143. S. 289. Ist SQ : SE = SE : SA, oder log SQ — log SE = log SE — log SA, so wird, weil EeqQ = n [log SQ — log SE] und EeaA = n [log SE — log SA], wo n eine beliebige Constante bezeichnet, Fläche EeqQ = EeaA.
Empfohlene Zitierweise:
Isaac Newton: Mathematische Principien der Naturlehre. Robert Oppenheim, Berlin 1872, Seite 289. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:NewtonPrincipien.djvu/297&oldid=- (Version vom 1.8.2018)