Seite:AbrahamElektromagnetismus1914.djvu/193

aus Wikisource, der freien Quellensammlung
Wechseln zu: Navigation, Suche
Dieser Text wurde anhand der angegebenen Quelle einmal korrekturgelesen. Die Schreibweise sollte dem Originaltext folgen. Es ist noch ein weiterer Korrekturdurchgang nötig.

Durch Integration über das Feld des Systemes \Sigma dessen Volumenelemente denen des ruhenden Systemes \Sigma_{0} durch (105) zugeordnet und daher im Verhältnis

dv:dv_{0}=\varkappa

verkleinert sind, folgt

(124d) \mathfrak{G}_{x}=\int dv\mathfrak{g}_{x}=\frac{\beta}{4\pi c\varkappa}\cdot\int dv_{0}\left\{ \mathfrak{E}_{0y}^{2}+\mathfrak{E}_{0z}^{2}\right\}.

Beachtet man ferner, daß in \Sigma_{0} das Feld dasjenige einer ruhenden Kugel ist, das mithin aus Symmetriegründen

\int dv_{0}\mathfrak{E}_{0x}^{2}=\int dv_{0}\mathfrak{E}_{0y}^{2}=\int dv_{0}\mathfrak{E}_{0z}^{2}

gilt, so erhält man

\int\frac{dv_{0}}{8\pi}\left\{ \mathfrak{E}_{0y}^{2}+\mathfrak{E}_{0z}^{2}\right\} =\frac{2}{3}\int\frac{dv_{0}}{8\pi}\mathfrak{E}_{0}^{2}=\frac{2}{3}U_{0}.

Der Betrag des der Bewegungsrichtung des Heaviside-Ellipsoides parallelen Vektors \mathfrak{E} wird demnach

(124e) |\mathfrak{G}|=\frac{4}{3}\frac{\beta}{c\varkappa}U_{0}=\frac{2}{3}\frac{e^{2}}{ac^{2}}\frac{|\mathfrak{v}|}{\varkappa},\qquad\left\{ \varkappa=\sqrt{1-\beta^{2}}\right\} .

Aus der so bestimmten elektromagnetischen Bewegungsgröße folgt, auf Grund der allgemeinen Beziehung (103), die doppelte magnetische Energie

(124f) 2T=\frac{2}{3}\frac{e^{2}\beta^{2}}{a\varkappa}.

Hieraus und aus (124a) erhält man, für die gesamte elektromagnetische Energie des Heaviside-Ellipsoides, den Ausdruck

(124g) W=2T-L=\frac{e^{2}}{2a\varkappa}\left(1+\frac{\beta^{2}}{3}\right).

H. A. Lorentz nimmt nun an, die träge Masse des Elektrons sei rein elektromagnetischer Art; demnach zieht er, neben der elektromagnetischen Bewegungsgröße (124e), eine materielle Bewegungsgröße nicht in Rechnung. Er erhält auf Grund der Formeln (115) und (115a), für die longitudinale und transversale Masse

(125) m_{s}=m_{0}\cdot\varkappa^{-3}=m_{0}\cdot\left(1-\beta^{2}\right)^{-\frac{3}{2}},
(125a) m_{r}=m_{0}\cdot\varkappa^{-1}=m_{0}\cdot\left(1-\beta^{2}\right)^{-\frac{1}{2}};