Seite:Grundgleichungen (Minkowski).djvu/31

aus Wikisource, der freien Quellensammlung
Wechseln zu: Navigation, Suche
Fertig. Dieser Text wurde zweimal anhand der Quelle korrekturgelesen. Die Schreibweise folgt dem Originaltext.

(37) die Identität . Es wird danach eine Invariante bei den Lorentz-Transformationen (s. Gleich. (26) in § 5).

Für die duale Matrix folgt dann mit Rücksicht auf (36):

woraus zu ersehen ist, daß mit dem Raum-Zeit-Vektor II. Art zusammen auch die zugehörige duale Matrix sich wie ein Raum-Zeit-Vektor II. Art abändert, und es heiße deshalb mit den Komponenten der duale Raum-Zeit-Vektor von .

6°. Sind und zwei Raum-Zeit-Vektoren I. Art, so wird unter (wie auch unter ) die Verbindung

(43)

aus den bezüglichen Komponenten zu verstehen sein. Bei einer Lorentz-Transformation ist wegen diese Verbindung invariant. — Ist , so sollen und normal zu einander heißen.

Zwei Raum-Zeit-Vektoren I. Art geben ferner zur Bildung der -reihigen Matrix

Anlaß. Es zeigt sich dann sofort, daß das System der sechs Größen

(44)

sich bei den Lorentz-Transformationen als Raum-Zeit Vektor II. Art verhält. Der Vektor II. Art mit diesen Komponenten (44) werde mit bezeichnet. Man erschließt leicht . Der duale Vektor von soll geschrieben werden.

Ist ein Raum-Zeit-Vektor I. Art, ein Raum-Zeit-Vektor II. Art, so bedeutet zunächst jedenfalls eine -reihige Matrix. Bei einer Lorentz-Transformation geht in in über; dabei wird , d. h. transformiert sich wieder als ein Raum-Zeit-Vektor I. Art.

Man verifiziert, wenn ein Vektor I., ein Vektor II. Art ist, leicht die wichtige Identität

(45)
Empfohlene Zitierweise:

Hermann Minkowski: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Weidmannsche Buchhandlung, Berlin 1908, Seite 83. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:Grundgleichungen_(Minkowski).djvu/31&oldid=2769833 (Version vom 7.5.2016)