Produkt der Komplexe 310, 390.
– zweier Ideale 7, 74.
– – Ringideale 126.
– – Verbände 389.
Quadratischer Nichtrest 371.
– Rest 371.
Rationale Einheitsform 78.
Rationalitätsbereich, Zahlkörper, Körper 69.
Regulärer Kreiskörper 276.
– Kummerscher Körper 279.
Reguläre Primzahl 278.
Reguläres Ringideal 126.
Regulator des Körpers 108.
Relativ Abelscher Körper 141.
Relativdifferente des Körpers 94, 373.
– der Zahl 94, 373.
Relativdiskriminante des Körpers 95, 373.
– der Zahl 94, 373.
Relative Grundeinheiten 150, 396.
Relativ Galoisscher Körper 141.
Relativgrad 93.
Relativgruppe 141.
Relativkörper 92.
Relativ konjugiertes Ideal 93, 373.
– konjugierte Klassen 291, 389.
– – Komplexe 390.
– – Körper 93.
– – Zahlen 93, 373.
– quadratischer Körper 370.
– zyklisch 141.
Relativnorm des Ideals 93, 373.
– der Zahl 93, 373.
Reziproke Klasse 110.
Reziprozitätsgesetz 43–46, 169, 231, 312, 366, 466, 473, 474, 485, 486, 489.
Ring 121.
Ringideal 121, 127.
– im engeren Sinne 127.
–, reguläres 126.
Ringklasse 127.
Ringklassenkörper 509.
Semiprimär 230.
Spezieller Dirichletscher Körper 24, 47, 191.
Symbol 28.
– 28.
– 160.
– 162.
– 226.
– 234.
– 254.
– 254.
– 254.
– 265.
– 266, 274.
– 312.
– 346.
– 365, 380, 488.
– 366.
– 371, 484.
– 379, 484.
– 412.
– 453, 467.
Symbole 489.
Symbolische Potenz einer Klasse 291.
– – eines Komplexes 310.
– – einer Zahl 149.
System von Grundeinheiten 108.
– von Grundklassen 119.
– von relativen Grundeinheiten 150, 396.
– von unabhängigen Einheiten 109.
Teilbar (eine Form durch eine andere) 78.
– (ein Ideal durch ein anderes) 7, 74.
– (eine Zahl durch eine andere) 70.
– nach einer Primzahl (eine ganzzahlige Funktion durch eine andere) 85.
Total positiv 487.
Trägheitsgruppe des Primideals 14, 132.
Trägheitskörper des Primideals 15, 132.
Überstrichene Verzweigungsgruppe des Primideals 18, 19, 136, 137.
Überstrichener Verzweigungskörper des Primideals 18, 19, 136, 137.
Unabhängige Einheiten 109.
– Einheitenverbände 389.
– Idealklassen 176.
– Komplexe 390.
– relativquadratische Körper 485.
Untergruppe, den Unterkörper bestimmende 132.
Unterkörper 92.
–, zur Untergruppe gehöriger 131.
Unverzweigter Relativkörper 485, 508.
David Hilbert: David Hilbert Gesammelte Abhandlungen Erster Band – Zahlentheorie. Julius Springer, Göttingen 1932, Seite 538. Digitale Volltext-Ausgabe bei Wikisource, URL: https://de.wikisource.org/w/index.php?title=Seite:David_Hilbert_Gesammelte_Abhandlungen_Bd_1.djvu/555&oldid=- (Version vom 11.9.2016)